Chứng minh rằng : Có nhiều số thập phân hơn các số tự nhiên.
Hãy chứng minh tất cả các số tự nhiên chia cho 5 hoặc 2 đều có các chữ số ở phần thập phân ít hơn 2 chữ số
Cho số thập phân A bằng 0,123456789... trong đó phần thập phân là các số tự nhiên liên tiếp được viết liền theo thứ tự kể từ 1.Chứng minh rằng A là số vô tỉ.
Mình học lớp 5 mình trả lời không biết có đúng ko nếu đúng thì tớ thực sự giỏi.
Tại vì số thập phân a là số tự nhiên được viết từ 1 đến vân vân mà số tự nhiên thì có vô vàn số nên số thập phân a là số vô tỉ
đề 1 chứng minh rằng với mọi số tự nhiên n ,các số sau là số nguyên tố cùng nhau
a/ 7n+10 và 5n+7
b/ 2n+ và 4n+8
đề 2 chứng minh rằng có vô số tự nhiên n để n+15 và n+72 là hai số nguyên tố cùng nhau
Đề 3 số tự nhiên n có 54 ước , Chứng minh rằng tích các ước của n bằng n^27
Đề 4 tìm số tự nhiên khác 0 nhỏ hơn 60 có nhiều ước nhất
đề 1 chứng minh rằng với mọi số tự nhiên n ,các số sau là số nguyên tố cùng nhau
a/ 7n+10 và 5n+7
b/ 2n+ và 4n+8
đề 2 chứng minh rằng có vô số tự nhiên n để n+15 và n+72 là hai số nguyên tố cùng nhau
Đề 3 số tự nhiên n có 54 ước , Chứng minh rằng tích các ước của n bằng n^27
Đề 4 tìm số tự nhiên khác 0 nhỏ hơn 60 có nhiều ước nhất
Bài toán 8. Chứng minh rằng với mọi số tự nhiên a, tồn tại số tự nhiên b sao cho ab + 4 là số chính phương.
Bài toán 9. Cho hai số tự nhiên a và b (a < b). Tìm tổng các phân số tối giản có mẫu bằng 7, mỗi phân số lớn hơn a nhưng nhỏ hơn b.
Bài toán 10. Chứng minh rằng: A = 1 + 3 + 5 + 7 + ... + n là số chính phương (n lẻ).
10:
n lẻ nên n=2k-1
=>A=1+3+5+7+...+2k-1
Số số hạng là (2k-1-1):2+1=k-1+1=k(số)
Tổng là:
\(\dfrac{\left(2k-1+1\right)\cdot k}{2}=k^2\) là số chính phương(ĐPCM)
Cho số nguyên tố \(p>3\). Biết rằng có số tự nhiên \(n\) sao cho trong cách viết thập phân của số \(p^n\) có đúng \(20\) chữ số. Chứng minh rằng trong \(20\) chữ số này có ít nhất \(3\) chữ số giống nhau.
Chứng minh rằng tồn tại một số tự nhiên khi biểu diễn thập phân chỉ toàn chữ số 1 và chia hết cho 2011.
Xét 2011 số có dạng 1,11,111,...,111...1(có 2012 chữ số 1)
Vì ở đây có 2012 số nên theo nguyên lí Dirichlet, tồn tại ít nhất 2 số có cùng số dư khi chia cho 2011
Giả sử 2 số đó là 111...1(có m chữ số) và 111...1(có n chữ số) (m,n ∈ N*, m ≥ n
Vì chúng có cùng số dư khi chia cho 2011 nên khi trừ đi cho nhau thì chũng chia hết cho 2011.
=> 111...1(có m chữ số) - 111...1(có n chữ số) ⋮ 2011
=> 111...1(có m-n chữ số)000...0(có n chữ số 0)
=> 111...1(có m-n chữ số).10n ⋮ 2011
Mà UCLN(10n,2011)=1 => 111...1(có m-n chữ số 1) ⋮ 2011 (đpcm)
cho một số tự nhiên và một số thập phân có tổng =2101,68 . bỏ dấu phẩy của số thập phân đi ta được số thập phân hơn số tự nhiên đã cho 6653 đơn vị . tìm số thập phân và số tự nhiên đã cho
Chứng minh rằng các phân số sau tối giản với n tự nhiên:
3n+2/5n+3
Chứng minh rằng các phân số sau có giá trị tự nhiên:
a) 10 mũ 2002 +2 /3
b) 10 mũ 2003 +8 /9
Chứng minh rằng
a) 1717/2929=17171717/29292929
b) 3210-34/4170-41 = 6420-68 / 8340-82
Tìm số tự nhiên n để các phân số sau tối giản
a) 2n+3 / 4n+1
b) 3n+2 /7n+1
Tìm số tự nhiên n để n+3 / 2n-2 ; n+19 / n+6 có giá trị tự nhiên