2^2n*[2^2n+1)-1]-1chia hết cho 9 với n\(\varepsilon\)N
Tìm số tự nhiên n thuộc N biết
1) 2n+7 chia hết cho n+1
2) 2n+1chia hết cho 6-n
3) 3n chia hết cho 5-2n
4) 4n+3 chia hết cho 2n-6
1) 2n+7=2(n+1)+5
để 2n+7 chia hết cho n+1 thì 5 phải chia hết cho n+1
=> n+1\(\in\) Ư(5) => n\(\in\){...............}
bạn tự tìm n vì mình chưa biết bạn có học số âm hay chưa
Từ bài 2-> 4 áp dụng như bài 1
Ta có 2n+7=2(n+1)+5
Vì 2(n+1
Do đó 2n + 7=2(n+1)+5 khi 5 chí hết cho n +1
Suy ra n+1 "thuộc tập hợp" Ư (5) = {1;5}
Lập bảng n+1 I 1 I 5
n I 0 I 4
Vậy n "thuộc tập hợp" {0;4}
2. a) Tìm n thuộc N để n^5+1 chia hết cho n^3+1
b) Tìm n thuộc Z để n^5+1 chia hết cho n^3+1
3. Tìm số nguyên n sao cho:
a) n^2+2n-4 chia hết cho 11
b) 2n^3+n^2+7n+1chia hết cho 2n-1
c) n^4-2n^3+2n^2-2n+1 chia hết cho n^4-1
d) n^3-n^2+2n+7 chia hết cho n^2+1
2.a)n^5+1⋮n^3+1
⇒n^2.(n^3+1)-n^2+1⋮n^3+1
⇒1⋮n^3+1
⇒n^3+1ϵƯ(1)={1}
ta có :n^3+1=1
n^3=0
n=0
Vậy n=0
b)n^5+1⋮n^3+1
Vẫn làm y như bài trên nhưng vì nϵZ⇒n=0
Bữa sau giải bài 3 mình buồn ngủ quá!!!!!!!!
2. a) Tìm n thuộc N để n^5+1 chia hết cho n^3+1
b) Tìm n thuộc Z để n^5+1 chia hết cho n^3+1
3. Tìm số nguyên n sao cho:
a) n^2+2n-4 chia hết cho 11
b) 2n^3+n^2+7n+1chia hết cho 2n-1
c) n^4-2n^3+2n^2-2n+1 chia hết cho n^4-1
d) n^3-n^2+2n+7 chia hết cho n^2+1
1 Tìm n\(\in\)Z
3n+2 chia hết cho n-1
2n-1chia hết cho n+2
3n-2 chia hết cho 2n-3
1, 3n +2 chia hết cho n - 1
=> 3n - 3 + 5 chia hết cho n - 1
=> 5 chia hết cho n - 1
=> n - 1 thuộc ước của 5 là 1;-1;5;-5
=> n thuộc 2 ;0;6;-4;
\(\text{1,3n + 2 chia hết cho n - 1 }\)
= > 3n - 3 + 5 chia hết cho n - 1
= > 5 chia hết cho n - 1
= > n - 1 thuộc ước của 5 là : 1;-1;5;-5
= > n thuộc 2;0;6;-4;
Tìm số nguyên n biết
a, 2n+1chia hết cho n-2
b,2n-5chia hết cho n+1
c, n^2 +3n+7chia hết cho n+3
d, n^2+3chia hết cho n-1
a) Ta có: \(2n+1=2n-4+5\)
mà \(\left(2n-4\right)⋮\left(n-2\right)\Rightarrow5⋮\left(n-2\right)\)
\(\Rightarrow\left(n-2\right)\inƯ\left(5\right)\)
hồi trưa mk phải đi học xl bn nha mấy câu còn lại nè
b) Ta có: \(2n-5=2n+2-7\)
mà \(\left(2n+2\right)⋮\left(n+1\right)\Rightarrow7⋮\left(n+1\right)\)
\(\Rightarrow\left(n+1\right)\inƯ\left(7\right)\)
c) Ta có: \(n^2+3n+7=n\left(n+3\right)+7\)
mà \(n\left(n+3\right)⋮\left(n+3\right)\Rightarrow7⋮\left(n+3\right)\)
\(\Rightarrow\left(n+3\right)\inƯ\left(7\right)\)
2n+1chia hết cho n-2
3n+4chia hết cho n-1
2n +1 ⋮ n-2
n+n+1⋮n-2
n+n-2-2+5⋮n+2
2(n-2)+5 ⋮ n-2
⇒ 5 ⋮ n- 2
hay n-2 ∈ Ư(5)={1;5;-1;-5}
⇒ n ∈ { 3,7,1,-3 }
Vậy n = 3,7,1,-3
3n+4 ⋮ n-1
n+n+n-1-1-1+7⋮ n-1
3(n-1) +7 ⋮n-1
⇒ 7 ⋮ n-1 hay n-1 ϵ Ư(7)={1,7,-1,-7}
⇒ n ϵ { 2,8,0,-6 }
Vậy n = 2; 8; 0; -6
Tìm số tự nhiên n a)2n+1chia hết cho n-1 b)6n+20chia hết cho 2n+1
Tìm x,y ,n thuộc Z:
a)(x-3)+(y+2)= 6
b)(x^2-1)×(5-y^2)=-12
c)n+1 chia hết cho n-3
d)2n-3 chia hết cho 2n+1
e)2n+1chia hết cho n-1
a) (x-3)+(y+2)=6
<=>x+y-1=6
<=>x+y=7
Bài này thì có vô số nghiệm
Tim n: 3n+1chia hết cho n+2
4n-5 chia hết cho 2n-1
P = (4n-5)/(2n-1) = (4n-2 - 3)/(2n-1) = 2 - 3/(2n-1)
P thuộc Z khi và chỉ khi 3/(2n-1) thuộc Z <=> 2n-1 là ước của 3
* 2n - 1 = -1 <=> n = 0
* 2n - 1 = -3 <=> n = -1 (loại, vì n tự nhiên)
* 2n - 1 = 1 <=> n = 1
* 2n - 1 = 3 <=> n = 2
Vậy có 3 giá trị của n tự nhiên là: 0, 1, 2
Có: \(3n+1⋮n+2;4n-5⋮2n-1\)
=> \(\left(3n+6\right)-5⋮n+2\)và \(\left(4n-2\right)-3⋮2n-1\)
=> \(3\left(n+2\right)-5⋮n+2\)và \(2\left(2n-1\right)-3⋮2n-1\)
Mà \(3\left(n+2\right)⋮n+2\)và \(2\left(2n-1\right)⋮2n-1\)
=> \(5⋮n+2\)và \(3⋮2n-1\)
=> \(n+2\inƯ\left(5\right)=\left\{-5;-1;5;1\right\}\)và \(2n-1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
Lập bảng:
n+2 | -5 | -1 | 1 | 5 |
n | -7 | -3 | -1 | 3 |
và
2n-1 | -3 | -1 | 1 | 3 |
n | -1 | 0 | 1 | 2 |
=> \(n=-1\)(Do thỏa mãn cả hai điều kiện)