Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyenhoangngan
Xem chi tiết
Lan Bui
Xem chi tiết
Đào Việt Phương
Xem chi tiết
Tô Mì
16 tháng 8 2023 lúc 22:21

(a) \(f\left(x\right)⋮g\left(x\right)\Rightarrow\dfrac{x^2-5x+9}{x-3}\in Z\)

Ta có: \(\dfrac{x^2-5x+9}{x-3}\left(x\ne3\right)=\dfrac{x\left(x-3\right)-2\left(x-3\right)+3}{x-3}=x-2+\dfrac{3}{x-3}\)nguyên khi và chỉ khi: \(\left(x-3\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow\left[{}\begin{matrix}x-3=1\\x-3=-1\\x-3=3\\x-3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\\x=6\\x=0\end{matrix}\right.\) (thỏa mãn).

Vậy: \(x\in\left\{0;2;4;6\right\}\).

 

(b) \(f\left(x\right)⋮g\left(x\right)\Rightarrow\dfrac{2x^3-x^2+6x+2}{2x-1}\in Z\left(x\ne\dfrac{1}{2}\right)\)

Ta có: \(\dfrac{2x^3-x^2+6x+2}{2x-1}=\dfrac{x^2\left(2x-1\right)+3\left(2x-1\right)+5}{2x-1}=x^2+3+\dfrac{5}{2x-1}\)

nguyên khi và chỉ khi: \(\left(2x-1\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

\(\Rightarrow\left[{}\begin{matrix}2x-1=1\\2x-1=-1\\2x-1=5\\2x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=0\\x=3\\x=-2\end{matrix}\right.\) (thỏa mãn).

Vậy: \(x\in\left\{-2;0;1;3\right\}\).

Nguyễn Lê Phước Thịnh
16 tháng 8 2023 lúc 22:20

a: f(x) chia hết cho g(x)

=>x^2-3x-2x+6+3 chia hết cho x-3

=>3 chia hết cho x-3

=>x-3 thuộc {1;-1;3;-3}

=>x thuộc {4;2;6;0}

b: f(x) chia hết cho g(x)

=>2x^3-x^2+6x-3+5 chia hết cho 2x-1

=>5 chia hết cho 2x-1

=>2x-1 thuộc {1;-1;5;-5}

=>x thuộc {2;0;3;-2}

đỗ thị thu uyên
Xem chi tiết
Hoàng Nguyễn Văn
20 tháng 10 2019 lúc 9:21

Để f(x) chia hết cho g(x). Áp dụng định lý Bozu ta được:

f(3/2) =0 <=>  f(3/2)= 2 *(3/2)^3 -7*(3/2)^2 +5*3/2 +m=0 

<=>-3/2 +m=0 <=> m=3/2

Khách vãng lai đã xóa
Minecraft World
22 tháng 4 2020 lúc 13:55

f(x) = 2x^3 - 7x^2 + 5x + m 
= 2x^3 - 3x^2 - 4x^2 + 6x - x + m 
= x^2 (2x - 3) - 2x( 2x - 3) - (x - m) 
= (2x - 3) (x^2 - 2x) - (x-m) chia chết cho g(x) = 2x - 3
--> x - m chia hết cho 2x - 3
-> 2x - 2m cũng chia hết cho 2x - 3
Gọi 2x - 2m = (2x - 3) * k 
Ta có : 2x - 2m = 2xk - 3k
Áp dụng phương  pháp đồng nhất thức hệ số, suy ra k = 1 và 3k = 2m
Suy ra, m = 3/2 * k = 3/2 * 1 = 3/2.
Vậy m = 3/2

 


 


 

Khách vãng lai đã xóa
Hoa Thiên Cốt
Xem chi tiết
To Kill A Mockingbird
21 tháng 10 2018 lúc 15:56

1/ B chia đa thức f(x) cho g(x) như bình thường, dư 3

Để chia hết, số dư phải bằng 0

hay x- 2 thuộc ước của 3 bằng \(\pm1,\pm3\)

Ta có bảng gt:

.....

Vậy..........

Lan Phương Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 7 2023 lúc 0:04

a: f(x) chia hết cho g(x)

=>2x^2+4x-x-2+a+2 chia hết cho x+2

=>a+2=0

=>a=-2

b: f(x) chia hết cho g(x)

=>3x^2+6x+(m-6)x+2m-12-2m+7 chia hết cho x+2

=>-2m+7=0

=>m=7/2

Nguyễn tiến Mạnh
Xem chi tiết
Akai Haruma
29 tháng 6 lúc 18:48

Lời giải:

Nếu $n=3k$ với $k$ tự nhiên.

$f(x)=x^{6k}+x^{3k}+1=(x^{6k}-1)+(x^{3k}-1)+3$

$=(x^3)^{2k}-1+(x^3)^k-1+3$

$=(x^3-1)[(x^3)^{2k-1}+....+1]+(x^3-1)[(x^3)^{k-1}+...+1]+3$
$=(x-1)(x^2+x+1)[(x^3)^{2k-1}+....+1]+(x-1)(x^2+x+1)[(x^3)^{k-1}+...+1]+3$

$=(x-1)g(x)[(x^3)^{2k-1}+....+1]+(x-1)g(x)[(x^3)^{k-1}+...+1]+3$

$\Rightarrow f(x)$ chia $g(x)$ dư $3$ (loại) 

Nếu $n=3k+1$ với $k$ tự nhiên

\(f(x)=x^{2(3k+1)}+x^{3k+1}+1=x^{6k+2}+x^{3k+1}+1\\ =x^2(x^{6k}-1)+x(x^{3k}-1)+x^2+x+1\)

$=x^2[(x^3)^{2k}-1]+x[(x^3)^k-1]+x^2+x+1$

$=x^2(x^3-1)[(x^3)^{2k-1}+....+1]+x(x^3-1)[(x^3)^{k-1}+...+1]+x^2+x+1$
$=x^2(x-1)(x^2+x+1)[(x^3)^{2k-1}+....+1]+x(x-1)(x^2+x+1)[(x^3)^{k-1}+...+1]+x^2+x+1$

$=x^2(x-1)g(x)[(x^3)^{2k-1}+....+1]+x(x-1)g(x)[(x^3)^{k-1}+...+1]+g(x)\vdots g(x)$

Nếu $n=3k+2$ với $k$ tự nhiên

\(f(x)=x^{2(3k+2)}+x^{3k+2}+1=x^{6k+4}+x^{3k+2}+1\)

\(=x^4(x^{6k}-1)+x^2(x^{3k}-1)+x^4+x^2+1\)

$=x^4(x^{6k}-1)+x^2(x^{3k}-1)+x(x^3-1)+x^2+x+1$

Có:

$x^{6k}-1=(x^3)^{2k}-1\vdots x^3-1\vdots x^2+x+1$

$x^{3k}-1=(x^3)^k-1\vdots x^3-1\vdots x^2+x+1$

$x^3-1\vdots x^2+x+1$

$x^2+x+1\vdots x^2+x+1$

$\Rightarrow f(x)\vdots x^2+x+1$ hay $f(x)\vdots g(x)$

Vậy tóm lại với $n\not\vdots 3$ thì $f(x)\vdots g(x)$

Sái Ánh Dương
Xem chi tiết
Nguyễn Đức Trí
13 tháng 7 2023 lúc 9:36

\(F\left(x\right)=2x^3-7x^2+12x+a\)

\(G\left(x\right)=x+2\)

\(F\left(x\right):G\left(x\right)=2x^2-11x+34\) dư \(a-68\)

Để \(F\left(x\right)⋮G\left(x\right)\Rightarrow a-68=0\Rightarrow a=68\)

Đỗ Ngọc Giang
Xem chi tiết
Trần Thanh Phương
7 tháng 12 2018 lúc 18:17

f(x) = x3 - 3x2 - 3x - 1 ⋮ x2 + x + 1

f(x) = x3 + x2 - 4x2 + x - 4x - 4 + 3 ⋮ x2 + x + 1

f(x) = ( x3 + x2 + x ) - ( 4x2 + 4x + 4 ) + 3 ⋮ x2 + x + 1

f(x) = x ( x2 + x + 1 ) - 4 ( x2 + x + 1 ) + 3 ⋮ x2 + x + 1

f(x) = ( x2 + x + 1 ) ( x - 4 ) + 3 ⋮ x2 + x + 1

Mà ( x2 + x + 1 ) ( x - 4 ) ⋮ x2 + x + 1

=> 3 ⋮ x2 + x + 1

=> x2 + x + 1 thuộc Ư(3) = { 1; 3; -1; -3 }

Tự thay vào rồi tìm x thôi bạn 

Trần Thanh Phương
7 tháng 12 2018 lúc 19:03

VD :

x2 + x + 1 = 1

<=> x2 + x = 0

<=> x ( x + 1 ) = 0

\(\Rightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)

Xét tiếp 3 t/h còn lại nha bạn

Đỗ Ngọc Giang
7 tháng 12 2018 lúc 19:06

Thanks