\(\frac{2x-3}{2x^2+5x-12}-\frac{2x-3}{2x^2+3x-9}=0\)
Giải các phương trình sau :
a) ( 3x - 2 )( 4x + 3 ) = ( 2 - 3x )( x - 1)
b) x2 + ( x + 3 )( 5x - 7 ) = 9
c) 2x2 + 5x + 3 = 0
d) \(\frac{3-2x}{2006}+\frac{3-2x}{2007}+\frac{3-2x}{2008}=\frac{3-2x}{2009}+\frac{3-2x}{2010}\)
Giúp mik vs !!!
a, (3x - 2)(4x + 3) = (2 - 3x)(x - 1)
\(\Leftrightarrow\) (3x - 2)(4x + 3) - (2 - 3x)(x - 1) = 0
\(\Leftrightarrow\) (3x - 2)(4x + 3) + (3x - 2)(x - 1) = 0
\(\Leftrightarrow\) (3x - 2)(4x + 3 + x - 1) = 0
\(\Leftrightarrow\) (3x - 2)(5x + 2) = 0
\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\5x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{2}{3}\\x=\frac{-2}{5}\end{matrix}\right.\)
Vậy S = {\(\frac{2}{3}\); \(\frac{-2}{5}\)}
b, x2 + (x + 3)(5x - 7) = 9
\(\Leftrightarrow\) x2 - 9 + (x + 3)(5x - 7) = 0
\(\Leftrightarrow\) (x - 3)(x + 3) + (x + 3)(5x - 7) = 0
\(\Leftrightarrow\) (x + 3)(x - 3 + 5x - 7) = 0
\(\Leftrightarrow\) (x + 3)(6x - 10) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\6x-10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\frac{5}{3}\end{matrix}\right.\)
Vậy S = {-3; \(\frac{5}{3}\)}
c, 2x2 + 5x + 3 = 0
\(\Leftrightarrow\) 2x2 + 2x + 3x + 3 = 0
\(\Leftrightarrow\) 2x(x + 1) + 3(x + 1) = 0
\(\Leftrightarrow\) (x + 1)(2x + 3) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\frac{3}{2}\end{matrix}\right.\)
Vậy S = {-1; \(\frac{3}{2}\)}
d, \(\frac{3-2x}{2006}+\frac{3-2x}{2007}+\frac{3-2x}{2008}=\frac{3-2x}{2009}+\frac{3-2x}{2010}\)
\(\Leftrightarrow\) \(\frac{3-2x}{2006}+\frac{3-2x}{2007}+\frac{3-2x}{2008}-\frac{3-2x}{2009}-\frac{3-2x}{2010}=0\)
\(\Leftrightarrow\) (3 - 2x)\(\left(\frac{1}{2006}+\frac{1}{2007}+\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}\right)\) = 0
\(\Leftrightarrow\) 3 - 2x = 0
\(\Leftrightarrow\) x = \(\frac{3}{2}\)
Vậy S = {\(\frac{3}{2}\)}
Chúc bn học tốt!!
Câu 2: Giải phương trình:
a,\(\frac{10x+3}{12}=1+\frac{6+8x}{9}\)
b) 2x3 – 5x2 + 3x = 0
c) \(\frac{x}{2x-6}+\frac{x}{2x+2}-\frac{2x}{\left(x+1\right)\left(x-3\right)}=0\)
- Giải các bất phương trình và các phương trình sau:
a. 1-\(\frac{2x-1}{9}\)= 3-\(\frac{3x-3}{12}\)
b. \(\frac{5x-2}{3}-\frac{2x^2-x}{2}>\frac{x\left(1-3x\right)}{3}+\frac{15x}{4}\)
c. \(\frac{3}{4x-20}+\frac{15}{50-2x^2}+\frac{7}{6x+30}=0\)
a, \(1-\frac{2x-1}{9}=3-\frac{3x-3}{12}\)
\(\Leftrightarrow\frac{108-12\cdot\left(2x-1\right)}{108}=\frac{108\cdot3-9\cdot\left(3x-3\right)}{108}\)
\(\Rightarrow108-12\cdot\left(x-1\right)=108\cdot3-9\cdot\left(3x-3\right)\)
\(\Leftrightarrow108-24x+12=324-27x+27\)
\(\Leftrightarrow3x=231\)
\(\Rightarrow x=77\)
c,\(\frac{3}{4x-20}+\frac{15}{50-2x^2}+\frac{7}{6x+30}=0\)
\(\Rightarrow3\cdot\left(50-2x^2\right)\cdot\left(6x+30\right)+15\cdot\left(4x-20\right)\cdot\left(6x+30\right)+7\cdot\left(4x-20\right)\cdot\left(50-2x^2\right)=0\)
\(\Leftrightarrow900x+4500-36x^3-180x^2+360x^2+1800x-1800x-9000+1400x-56x^3-7000+280x^2=0\)
\(\Leftrightarrow-92x^3+460x^2+2300x-11500=0\)
\(\Leftrightarrow92x^3-460x^2-2300x+11500=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-5\\x=5\end{cases}}\)
a) Thay x = 3 vào bất phương trình ta được: 2.3 + 3 < 9 <=> 9 < 9 (khẳng định sai)
Vậy x = 3 không là nghiệm của bất phương trình2x + 3 < 9
b) Thay x = 3 vào bất phương trình ta có: -4.3 > 2.3 + 5 => -12 > 11 (khẳng định sai)
Vậy x = 3 không là nghiệm của bất phương trình -4x > 2x + 5
c) Thay x = 3 vào bất phương trình ta có: 5 - 3 > 3.3 -12 => 2 > -3 (khẳng định đúng)
Vậy x = 3 là nghiệm của bất phương trình 5 - x > 3x - 12
a, 12 - 3. ( x - 2 ) = ( x + 2 ).( 1 - 3x ) + 2x
b, ( x + 5 ).( x + 2 ) = 3.( 4x - 2 ) + ( x - 5 )
c, \(\frac{x-5}{x^2-5x}-\frac{x-5}{2x^2-10x}=\frac{x+25}{2x^2-50}\)
d, 4x2 - 1 = ( 2x + 1 ).( 3x - 5 )
e, x2 - 5x + 6 = 0
a/ 12-3(x-2)=(x+2)(1-3x)+2x
\(\Leftrightarrow18-3x=-3x^2-3x+2\)
\(\Leftrightarrow3x^2=-16\left(vl\right)\)
=> phương trình vô nghiệm
b/\(\left(x+5\right)\left(x+2\right)\) =3(4x-2)+(x-5)
\(\Leftrightarrow x^2+3x+10=13x-11\)
\(\Leftrightarrow x^2-10x+21=0\)
\(\Leftrightarrow\left(x-7\right)\left(x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=7\\x=3\end{matrix}\right.\)
c/\(\frac{x-5}{x^2-5x}-\frac{x-5}{2x^2-10x}=\frac{x+25}{2x^2-50}\)(x khác 0)
\(\Leftrightarrow\frac{x-5}{x\left(x-5\right)}-\frac{x-5}{2x\left(x-5\right)}=\frac{x^2+25}{2x^2-50}\)
\(\frac{\Leftrightarrow1}{x}-\frac{1}{2x}=\frac{x+25}{2x^2-50}\)
\(\Leftrightarrow\frac{1}{2x}=\frac{x+25}{2x^2-50}\Leftrightarrow2x^2-50=2x^2+50x\)
\(\Leftrightarrow50x=-50\Leftrightarrow x=-1\)(tm)
d/4x2-1=(2x+1)(3x-5)
\(\Leftrightarrow4x^2-1=6x^2-7x-5\)
\(\Leftrightarrow2x^2-7x-4=0\Leftrightarrow\left(x-4\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\frac{1}{2}\end{matrix}\right.\)
e/ \(x^2-5x+6=0\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
Câu 3: Giải các phương trình sau bằng cách đưa về dạng ax+b=0
1. a, \(\frac{5x-2}{3}=\frac{5-3x}{2}\); b, \(\frac{10x+3}{12}=1+\frac{6+8x}{9}\)
c, \(2\left(x+\frac{3}{5}\right)=5-\left(\frac{13}{5}+x\right)\); d, \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\)
e, \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\); f, 4 (0,5-1,5x)=\(\frac{5x-6}{3}\)
g, \(\frac{3x+2}{2}-\frac{3x+1}{6}=\frac{5}{3}+2x\); h, \(\frac{x+4}{5}.x+4=\frac{x}{3}-\frac{x-2}{2}\)
i, \(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\); k, \(\frac{5x+2}{6}-\frac{8x-1}{3}=\frac{4x+2}{5}-5\)
m, \(\frac{2x-1}{5}-\frac{x-2}{3}=\frac{x+7}{15}\); n, \(\frac{1}{4}\left(x+3\right)=3-\frac{1}{2}\left(x+1\right).\frac{1}{3}\left(x+2\right)\)
p, \(\frac{x}{3}-\frac{2x+1}{6}=\frac{x}{6}-x\); q, \(\frac{2+x}{5}-0,5x=\frac{1-2x}{4}+0,25\)
r, \(\frac{3x-11}{11}-\frac{x}{3}=\frac{3x-5}{7}-\frac{5x-3}{9}\); s, \(\frac{9x-0,7}{4}-\frac{5x-1,5}{7}=\frac{7x-1,1}{6}-\frac{5\left(0,4-2x\right)}{6}\)
t, \(\frac{2x-8}{6}.\frac{3x+1}{4}=\frac{9x-2}{8}+\frac{3x-1}{12}\); u, \(\frac{x+5}{4}-\frac{2x-3}{3}=\frac{6x-1}{3}+\frac{2x-1}{12}\)
v, \(\frac{5x-1}{10}+\frac{2x+3}{6}=\frac{x-8}{15}-\frac{x}{30}\); w, \(\frac{2x-\frac{4-3x}{5}}{15}=\frac{7x\frac{x-3}{2}}{5}-x+1\)
Đây là những bài cơ bản mà bạn!
\(\frac{5x-2}{3}=\frac{5-3x}{2}\)
\(< =>\frac{\left(5x-2\right).2}{6}=\frac{\left(5-3x\right).3}{6}\)
\(< =>\left(5x-2\right).2=\left(5-3x\right).3\)
\(< =>10x-4=15-9x\)
\(< =>10x+9x=15+4\)
\(< =>19x=19< =>x=1\)
\(\frac{10x+3}{12}=1+\frac{6+8x}{9}\)
\(< =>\frac{\left(10x+3\right).3}{36}=\frac{36}{36}+\frac{\left(6+8x\right).4}{36}\)
\(< =>\left(10x+3\right).3=36+\left(6+8x\right).4\)
\(< =>30x+9=36+24+32x\)
\(< =>32x-30x=9-36-24\)
\(< =>2x=9-60=-51< =>x=-\frac{51}{2}\)
Bài 1: Thực hiện phép tính
a. \(\frac{11x+10}{3x-3}+\frac{15x+13}{4-4x}\)
b. \(\frac{5x+3}{x^2-3x}+\frac{9-x}{9-3x}\)
c. \(\frac{4xy-1}{5x^2y}-\frac{2xy-1}{5x^2y}\)
d. \(\frac{x+8}{x^2-16}-\frac{2}{x^2+4x}\)
e. \(\frac{x^2-49}{2x+1}.\frac{3}{7-x}\)
f. \(\frac{3x^2-2x}{x^2-1}.\frac{1-x^4}{\left(2-3x\right)^3}\)
g. \(\frac{5xy}{2x-3}:\frac{15xy^3}{12-8x}\)
h. \(\frac{x^2+2x}{3x^2-6x+3}:\frac{2x+4}{5x-5}\)
Các ĐKXĐ: bạn tự tìm
a)
\(\frac{11x+10}{3x-3}+\frac{15x+13}{4-4x}=\frac{11x+10}{3(x-1)}-\frac{15x+13}{4(x-1)}=\frac{4(11x+10)-3(15x+13)}{12(x-1)}\)
\(=\frac{-x+1}{12(x-1)}=\frac{-(x-1)}{12(x-1)}=\frac{-1}{12}\)
b)
\(\frac{5x+3}{x^2-3x}+\frac{9-x}{9-3x}=\frac{5x+3}{x(x-3)}+\frac{x-9}{3x-9}=\frac{5x+3}{x(x-3)}+\frac{x-9}{3(x-3)}\)
\(=\frac{3(5x+3)}{3x(x-3)}+\frac{x(x-9)}{3x(x-3)}=\frac{x^2+6x+9}{3x(x-3)}=\frac{(x+3)^2}{3x(x-3)}\)
c)
\(\frac{4xy-1}{5x^2y}-\frac{2xy-1}{5x^2y}=\frac{(4xy-1)-(2xy-1)}{5x^2y}=\frac{2xy}{5x^2y}=\frac{2}{5x}\)
d)
$\frac{x+8}{x^2-16}-\frac{2}{x^2+4x}=\frac{x+8}{(x-4)(x+4)}-\frac{2}{x(x+4)}$
$=\frac{x(x+8)}{x(x-4)(x+4)}-\frac{2(x-4)}{x(x+4)(x-4)}$
$=\frac{x^2+8x-2(x-4)}{x(x+4)(x-4)}=\frac{x^2+6x+8}{x(x+4)(x-4)}$
$=\frac{(x+2)(x+4)}{x(x+4)(x-4)}=\frac{x+2}{x(x-4)}$
e)
$\frac{x^2-49}{2x+1}.\frac{3}{7-x}=\frac{(x-7)(x+7)}{2x+1}.\frac{-3}{x-7}$
$=\frac{-3(x+7)}{2x+1}$
f)
$\frac{3x^2-2x}{x^2-1}.\frac{1-x^4}{(2-3x)^3}$
$=\frac{2x-3x^2}{x^2-1}.\frac{x^4-1}{(2-3x)^3}=\frac{x(2-3x)(x^2-1)(x^2+1)}{(x^2-1)(2-3x)^3}$
$=\frac{x(x^2+1)}{(2-3x)^2}$
g)
$\frac{5xy}{2x-3}:\frac{15xy^3}{12-8x}=\frac{5xy}{2x-3}.\frac{12-8x}{15xy^3}$
$=\frac{5xy}{2x-3}.\frac{-4(2x-3)}{15xy^3}=\frac{-4}{3y^2}$
h)
$\frac{x^2+2x}{3x^2-6x+3}:\frac{2x+4}{5x-5}=\frac{x(x+2)}{3(x-1)^2}:\frac{2(x+2)}{5(x-1)}$
$=\frac{x(x+2)}{3(x-1)^2}.\frac{5(x-1)}{2(x+2)}$
$=\frac{5x}{6(x-1)}$
Bài 1: Thực hiện các phép tính sau
a.\(\frac{11x+10}{3x-3}+\frac{15x+13}{4-4x}\)
b.\(\frac{5x+3}{x^2-3x}+\frac{9-x}{9-3x}\)
c.\(\frac{4xy-1}{5x^2y}-\frac{2xy-1}{5x^2y}\)
d.\(\frac{x+8}{x^2-16}-\frac{2}{x^2+4x}\)
e.\(\frac{x^2-49}{2x+1}.\frac{3}{7-x}\)
f.\(\frac{3x^2-2x}{x^2-1}.\frac{1-x^4}{\left(2-3x\right)^3}\)
g.\(\frac{5xy}{2x-3}:\frac{15xy^3}{12-8x}\)
h.\(\frac{x^2+2x}{3x^2-6x+3}:\frac{2x+4}{5x-5}\)
Bài 2: Giải các phương trình sau:
1) 4x+20 = 0
2) 3x + 15 = 30
3) 8x-7 = 2x+11
4) 2x+4 ( 36-x ) = 100
5) 2x- ( 3-5x ) = 4(x+3)
6) 3x(x+2) = 3(x-2)2
7) \(\frac{5x-2}{3}\) =3
8) (6x+3) (5x-20) = 0
9) x5 -3x2 +3x-1 = 0
10) \(\frac{2x_{ }-5}{x+5}\) = 3
11) \(\frac{1}{x-2}\)+4 = \(\frac{x-3}{2-x}\)
12) \(\frac{x+2}{x-2}\) -1 = \(\frac{2x}{x\left(x-2\right)}\)
1) Ta có : \(4x+20=0\)
=> \(x=-\frac{20}{4}=-5\)
Vậy phương trình có tập nghiệm là \(S=\left\{-5\right\}\)
2) Ta có : \(3x+15=30\)
=> \(3x=15\)
=> \(x=5\)
Vậy phương trình có tập nghiệm là \(S=\left\{5\right\}\)
3) Ta có : \(8x-7=2x+11\)
=> \(8x-2x=11+7=18\)
=> \(6x=18\)
=> \(x=3\)
Vậy phương trình có tập nghiệm là \(S=\left\{3\right\}\)
4) Ta có : \(2x+4\left(36-x\right)=100\)
=> \(2x+144-4x=100\)
=> \(-2x=-44\)
=> \(x=22\)
Vậy phương trình có tập nghiệm là \(S=\left\{22\right\}\)
5) Ta có : \(2x-\left(3-5x\right)=4\left(x+3\right)\)
=> \(2x-3+5=4x+12\)
=> \(-2x=10\)
=> \(x=-5\)
Vậy phương trình có tập nghiệm là \(S=\left\{-5\right\}\)
1) 4x+20=0
\(\Leftrightarrow\) 4x=-20
\(\Leftrightarrow\) x=-5
Vậy pt trên có tập nghiệm là S={-5}
2) 3x+15=30
\(\Leftrightarrow\) 3x=15
\(\Leftrightarrow\) x=5
Vậy pt trên có tập nghiệm là S={5}
3) 8x-7=2x+11
\(\Leftrightarrow\) 8x-2x=11+7
\(\Leftrightarrow\) 6x=18
\(\Leftrightarrow\) x=3
Vậy pt trên có tập nghiệm là S={3}
4) 2x+4(36-x)=100
\(\Leftrightarrow\) 2x+144-4x=100
\(\Leftrightarrow\) -2x+144=100
\(\Leftrightarrow\) -2x=-44
\(\Leftrightarrow\) x=22
Vậy pt trên có tập nghiệm là S={22}
5) 2x-(3-5x)=4(x+3)
\(\Leftrightarrow\) 2x-3+5x=4x+12
\(\Leftrightarrow\) 2x+5x-4x=12+3
\(\Leftrightarrow\) 3x=15
\(\Leftrightarrow\) x=5
Vậy pt trên có tập nghiệm là S={5}
6) 3x(x+2)=3(x-2)2
\(\Leftrightarrow\) 3x2+6x=3(x2-2x.2+22)
\(\Leftrightarrow\) 3x2+6x=3x2-12x+12
\(\Leftrightarrow\) 3x2-3x2+6x+12x=12
\(\Leftrightarrow\) 18x=12
\(\Leftrightarrow\) x=\(\frac{2}{3}\)
7) \(\frac{5x-2}{3}\)=3
\(\Leftrightarrow\) 5x-2=9
\(\Leftrightarrow\) 5x=11
\(\Leftrightarrow\) x=\(\frac{11}{5}\)
8) (6x+3)(5x-20)=0
\(\Rightarrow\) 6x+3=0 hoặc 5x-20=0
\(\Rightarrow\) 6x=-3 hoặc 5x=20
\(\Rightarrow\) x=\(\frac{-1}{2}\) hoặc x=4
Vậy pt trên có tập nghiệm là S={\(\frac{-1}{2}\);4}
10) \(\frac{2x-5}{x+5}=3\)
\(\Leftrightarrow\) \(\frac{2x-5}{x+5}\)= \(\frac{3\left(x+5\right)}{x+5}\)
\(\Leftrightarrow\) 2x-5=3x+15
\(\Leftrightarrow\) 2x-3x=15+5
\(\Leftrightarrow\) -x=20
\(\Leftrightarrow\) x=-20
Vậy pt trên có tập nghiệm là S={-20}
11) \(\frac{1}{x-2}+4=\frac{x-3}{2-x}\)
\(\Leftrightarrow\) \(\frac{1}{x-2}+\frac{4\left(x-2\right)}{x-2}=\frac{3-x}{x-2}\)
\(\Leftrightarrow\) 1+4x-8=3-x
\(\Leftrightarrow\) 4x+x=3+8-1
\(\Leftrightarrow\) 5x=10
\(\Leftrightarrow\) x=2
Vậy pt trên có tập nghiệm là S={2}
12) \(\frac{x+2}{x-2}-1=\frac{2x}{x\left(x-2\right)}\)
\(\Leftrightarrow\) \(\frac{x\left(x+2\right)}{x\left(x-2\right)}-\frac{x\left(x-2\right)}{x\left(x-2\right)}=\frac{2x}{x\left(x-2\right)}\)
\(\Leftrightarrow\) x2+2x-x2+2x=2x
\(\Leftrightarrow\) 2x+2x-2x=0
\(\Leftrightarrow\) 2x=0
\(\Leftrightarrow\) x=0
Vậy pt trên có tập nghiệm là S={0}
Thu gọn:
a) 2x(x2-2)-3(4-3x)-2x3+5x
b)\(\frac{x^2+1}{x^2-3x}+\frac{3}{x}-\frac{x}{x-3}\)
c)\(\frac{5}{2x-3}+\frac{2}{2x+3}-\frac{2x-33}{9-4x^2}\)