Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khôi Võ Nguyễn Đăng
Xem chi tiết
Akai Haruma
8 tháng 3 2021 lúc 22:15

Lời giải:

Áp dụng BĐT Bunhiacopxky:

$\frac{47}{15}(3x^2+5y^2)=[(\sqrt{3}x)^2+(-\sqrt{5}y)^2][(\frac{2}{\sqrt{3}})^2+(\frac{3}{\sqrt{5}})^2]\geq (2x-3y)^2$

$\Leftrightarrow \frac{47}{15}(3x^2+5y^2)\geq 49$

$\Rightarrow 3x^2+5y^2\geq \frac{735}{47}$

Ta có đpcm.

Nguyễn Thị Kỳ Duyên
Xem chi tiết
Thắng Nguyễn
31 tháng 7 2016 lúc 13:24

B=-3x2-5y2+2x+7y-23

\(=-3x^2-5y^2+2x-7y-\frac{1}{3}-\frac{49}{20}-\frac{1213}{60}\)

\(=-3x^2+2x-\frac{1}{3}-5y^2+7y-\frac{49}{20}-\frac{1213}{60}\)

\(=-3\left(x^2-2\cdot\frac{1}{3}\cdot x+\frac{1}{3}^2\right)-5\left(y^2-2\cdot\frac{7}{10}\cdot y+y^2\right)-\frac{1213}{60}\)

\(=-3\left(x-\frac{1}{3}\right)^2-5\left(y-\frac{7}{10}\right)^2-\frac{1213}{60}\le0-\frac{1213}{60}\)

\(\Rightarrow B\le-\frac{1213}{60}\)

Dấu = khi x=1/3; y=7/10

Vậy .....

Phạm Minh Quang
Xem chi tiết
Huỳnh Thị Thanh Thảo
Xem chi tiết
Lê Văn Trưởng
Xem chi tiết
Nguyễn Quỳnh Anh
18 tháng 4 2022 lúc 21:20

=2/5 nha

Answer:

\(2+5y^2=6\)

\(5y^2=6-2\)

\(5y^2=4\)

\(5y^2=2^2\)

 

\(\Rightarrow5y=2\)

\(y=2\div5\)

\(y=\dfrac{2}{5}\)

Vậy \(y=\dfrac{2}{5}\)

Lê Văn Trưởng
Xem chi tiết
Lê Văn Trưởng
18 tháng 4 2022 lúc 21:03

ai bt thì giúp mk nhé

Nakaroth247
18 tháng 4 2022 lúc 21:05

`(x - 1)^2 + 5y^2 = 6`

`<=>` $\left[\begin{matrix} (x - 1)^2 = 0\\ (x - 1)^2 = 2\end{matrix}\right.$

`<=>` $\left[\begin{matrix} y = -1; 1\\ y = -1; 1\end{matrix}\right.$\

`<=>` $\left[\begin{matrix} x = 0 ; y = -1; 1\\ x = 2 ; y = -1; 1\end{matrix}\right.$

Lương Khánh Nhật Minh
18 tháng 4 2022 lúc 21:09

(x-1)2≥0         => 5y2≤6         => y2≤6/5        

Mà y2 là số chính phương                => y2 = 0   hoặc y2 = 1

TH1: y2= 0

=> (x-1)2 = 6 (vô lý)

TH2: y2 = 1            => y = -1 hoặc 1

=> 5y2=5

=> (x-1)2=6-5=1

=> x-1 = 1 hoặc x-1 = -1

=> x=2 hoặc x=0

Vậy các cặp số tm là (0,1); (0,-1); (2,1); (2,-1)

Tripe cyus Gaming
Xem chi tiết
hồng minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 7 2023 lúc 20:31

=>x^2+4xy+4y^2+y^2-2y<0

=>y^2-2y<0

=>0<y<2

=>y=1 và \(x\in Z\)

LÊ XUÂN ĐÀN
Xem chi tiết
Văn Dũng Bùi
2 tháng 3 2022 lúc 20:35

\(x^2+6xy+5y^2-4y-8=0\)

\(\Leftrightarrow (x^2+6xy+9y^2)-(4y^2+4y+1)=7\)

\(\Leftrightarrow (x+3y)^2-(2y+1)^2=7\)

\(\Leftrightarrow (x+y-1)(x+5y+1)=7\)

Vì x,y nguyên nên ta có các trường hợp sau:

TH1: \(\begin{cases} x+y-1=1\\ x+5y+1=7 \end{cases} \Leftrightarrow \begin{cases} x+y-1=1\\ 4y+2=6 \end{cases} \Leftrightarrow \begin{cases} x=1\\ y=1 \end{cases}\)

Các TH còn lại bạn tự làm nhé

Trần Tuấn Hoàng
2 tháng 3 2022 lúc 20:35

\(x^2+6xy+5y^2-4y-8=0\)

\(\Leftrightarrow\left(x^2+6xy+9y^2\right)-4y^2-4y-1-7=0\)

\(\Leftrightarrow\left(x+3y\right)^2-\left(2y+1\right)^2=7\)

\(\Leftrightarrow\left(x+5y+1\right)\left(x+y-1\right)=7=\left[{}\begin{matrix}1.7\\7.1\\\left(-1\right).\left(-7\right)\\\left(-7\right).\left(-1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5y+1=1;x+y-1=7\\x+5y+1=7;x+y-1=1\\x+5y+1=-1;x+y-1=-7\\x+5y+1=-7;x+y-1=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=10;y=-2\left(nhận\right)\\x=y=1\left(nhận\right)\\x=y=1\left(nhận\right)\\x=10;y=-2\left(nhận\right)\end{matrix}\right.\)

-Vậy các cặp số (x,y) là \(\left(10;-2\right);\left(1;1\right)\)