Tìm x,y thuộc Z thỏa 3x2 + 5y2 =23
Cho x,y thỏa mãn 2x - 3y = 7. Chứng minh rằng 3x2 + 5y2 \(\ge\) \(\dfrac{735}{47}\)
Lời giải:
Áp dụng BĐT Bunhiacopxky:
$\frac{47}{15}(3x^2+5y^2)=[(\sqrt{3}x)^2+(-\sqrt{5}y)^2][(\frac{2}{\sqrt{3}})^2+(\frac{3}{\sqrt{5}})^2]\geq (2x-3y)^2$
$\Leftrightarrow \frac{47}{15}(3x^2+5y^2)\geq 49$
$\Rightarrow 3x^2+5y^2\geq \frac{735}{47}$
Ta có đpcm.
tìm GTLN
B=-3x2-5y2+2x+7y-23
B=-3x2-5y2+2x+7y-23
\(=-3x^2-5y^2+2x-7y-\frac{1}{3}-\frac{49}{20}-\frac{1213}{60}\)
\(=-3x^2+2x-\frac{1}{3}-5y^2+7y-\frac{49}{20}-\frac{1213}{60}\)
\(=-3\left(x^2-2\cdot\frac{1}{3}\cdot x+\frac{1}{3}^2\right)-5\left(y^2-2\cdot\frac{7}{10}\cdot y+y^2\right)-\frac{1213}{60}\)
\(=-3\left(x-\frac{1}{3}\right)^2-5\left(y-\frac{7}{10}\right)^2-\frac{1213}{60}\le0-\frac{1213}{60}\)
\(\Rightarrow B\le-\frac{1213}{60}\)
Dấu = khi x=1/3; y=7/10
Vậy .....
1. Cho x,y thỏa mãn: x2 + 5y2 - 4xy + 2y = 3. Tìm x,y sao cho x đạt GTLN
2. Cho x,y thỏa mãn: 3x2 + y2 + 2xy + 4 = 7x + 3y
a) Tìm GTNN, GTLN của biểu thức P = x + y
b) Tìm GTNN, GTLN của x
3. Cho x,y thỏa mãn: x2 + 2y2 + 2xy + 7x + 7y + 10 = 0. Tìm GTLN, GTNN của S = x + y
tìm x,y thuộc Z thỏa
3x2+5y2=23
tìm cặp số nguyên x,y thỏa mãn ( x - 1)2 + 5y2 = 6
Answer:
\(2+5y^2=6\)
\(5y^2=6-2\)
\(5y^2=4\)
\(5y^2=2^2\)
\(\Rightarrow5y=2\)
\(y=2\div5\)
\(y=\dfrac{2}{5}\)
Vậy \(y=\dfrac{2}{5}\)
tìm cặp số nguyên x,y thỏa mãn ( x - 1)2 + 5y2 = 6
`(x - 1)^2 + 5y^2 = 6`
`<=>` $\left[\begin{matrix} (x - 1)^2 = 0\\ (x - 1)^2 = 2\end{matrix}\right.$
`<=>` $\left[\begin{matrix} y = -1; 1\\ y = -1; 1\end{matrix}\right.$\
`<=>` $\left[\begin{matrix} x = 0 ; y = -1; 1\\ x = 2 ; y = -1; 1\end{matrix}\right.$
(x-1)2≥0 => 5y2≤6 => y2≤6/5
Mà y2 là số chính phương => y2 = 0 hoặc y2 = 1
TH1: y2= 0
=> (x-1)2 = 6 (vô lý)
TH2: y2 = 1 => y = -1 hoặc 1
=> 5y2=5
=> (x-1)2=6-5=1
=> x-1 = 1 hoặc x-1 = -1
=> x=2 hoặc x=0
Vậy các cặp số tm là (0,1); (0,-1); (2,1); (2,-1)
tìm x , y thỏa mãn : x2+5y2=345
Tìm các số nguyên x,y thỏa mãn:
x2 + 5y2 +4xy - 2y < 0
=>x^2+4xy+4y^2+y^2-2y<0
=>y^2-2y<0
=>0<y<2
=>y=1 và \(x\in Z\)
Tìm tất cả các số nguyên x,y . thỏa mãn phương trình : x2+6xy+5y2-4y-8=0
\(x^2+6xy+5y^2-4y-8=0\)
\(\Leftrightarrow (x^2+6xy+9y^2)-(4y^2+4y+1)=7\)
\(\Leftrightarrow (x+3y)^2-(2y+1)^2=7\)
\(\Leftrightarrow (x+y-1)(x+5y+1)=7\)
Vì x,y nguyên nên ta có các trường hợp sau:
TH1: \(\begin{cases} x+y-1=1\\ x+5y+1=7 \end{cases} \Leftrightarrow \begin{cases} x+y-1=1\\ 4y+2=6 \end{cases} \Leftrightarrow \begin{cases} x=1\\ y=1 \end{cases}\)
Các TH còn lại bạn tự làm nhé
\(x^2+6xy+5y^2-4y-8=0\)
\(\Leftrightarrow\left(x^2+6xy+9y^2\right)-4y^2-4y-1-7=0\)
\(\Leftrightarrow\left(x+3y\right)^2-\left(2y+1\right)^2=7\)
\(\Leftrightarrow\left(x+5y+1\right)\left(x+y-1\right)=7=\left[{}\begin{matrix}1.7\\7.1\\\left(-1\right).\left(-7\right)\\\left(-7\right).\left(-1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5y+1=1;x+y-1=7\\x+5y+1=7;x+y-1=1\\x+5y+1=-1;x+y-1=-7\\x+5y+1=-7;x+y-1=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=10;y=-2\left(nhận\right)\\x=y=1\left(nhận\right)\\x=y=1\left(nhận\right)\\x=10;y=-2\left(nhận\right)\end{matrix}\right.\)
-Vậy các cặp số (x,y) là \(\left(10;-2\right);\left(1;1\right)\)