Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
minhduo
Xem chi tiết

b:Ta có: \(A=\frac{2n-1}{n+8}-\frac{n-14}{n+8}\)

\(=\frac{2n-1-n+14}{n+8}=\frac{n+13}{n+8}\)

Để A là số nguyên thì n+13⋮n+8

=>n+8+5⋮n+8

=>5⋮n+8

=>n+8∈{1;-1;5;-5}

=>n∈{-7;-9;-3;-13}

Trần Thị Mai Phương
Xem chi tiết
Nguyễn Quang Hải
Xem chi tiết
Phạm Thúy Nga
Xem chi tiết
soyeon_Tiểu bàng giải
17 tháng 7 2016 lúc 14:54

a) Để A là phân số thì n + 3 khác 0 => n khác -3 thì A là phân số

b) Để A nguyên thì 2n - 5 chia hết cho n + 3

=> 2n + 6 - 11 chia hết cho n + 3

=> 2.(n + 3) - 11 chia hết cho n + 3

Do 2.(n + 3) chia hết cho n + 3 => 11 chia hết cho n + 3

=> n + 3 thuộc {1 ; -1; 11; -11}

=> n thuộc {-2; -4; 8; -14}

c) Gọi d là ước nguyên tố chung của 2n - 5 và n + 3

=> 2n - 5 chia hết cho d; n + 3 chia hết cho d

=> 2n - 5 chia hết cho d; 2.(n + 3) chia hết cho d

=> 2n - 5 chia hết cho d, 2n + 6 chia hết cho d

=> (2n + 6) - (2n - 5) chia hết cho d

=> 2n + 6 - 2n + 5 chia hết cho d

=> 11 chia hết cho d

=> d thuộc {1 ; 11}

Mà d nguyên tố => d = 11

Với d = 11 thì 2n - 5 chia hết cho 11, n + 3 chia hết cho 11

=> 2n - 5 + 11 chia hết cho 11 => 2n + 6 chia hết cho 11

=> 2.(n + 3) chia hết cho 11

Do (2,11)=1 => n + 3 chia hết cho 11

=> n = 11k + 8 ( k thuộc Z)

Vậy với n = 11k + 8 ( k thuộc Z) thì A rút gọn được

Với n khác 11k + 8 (k thuộc Z) thì A tối giản

Sarah
17 tháng 7 2016 lúc 16:14

a) Để A là phân số thì n + 3 khác 0 => n khác -3 thì A là phân số

b) Để A nguyên thì 2n - 5 chia hết cho n + 3

=> 2n + 6 - 11 chia hết cho n + 3

=> 2.(n + 3) - 11 chia hết cho n + 3

Do 2.(n + 3) chia hết cho n + 3 => 11 chia hết cho n + 3

=> n + 3 thuộc {1 ; -1; 11; -11}

=> n thuộc {-2; -4; 8; -14}

c) Gọi d là ước nguyên tố chung của 2n - 5 và n + 3

=> 2n - 5 chia hết cho d; n + 3 chia hết cho d

=> 2n - 5 chia hết cho d; 2.(n + 3) chia hết cho d

=> 2n - 5 chia hết cho d, 2n + 6 chia hết cho d

=> (2n + 6) - (2n - 5) chia hết cho d

=> 2n + 6 - 2n + 5 chia hết cho d

=> 11 chia hết cho d

=> d thuộc {1 ; 11}

Mà d nguyên tố => d = 11

Với d = 11 thì 2n - 5 chia hết cho 11, n + 3 chia hết cho 11

=> 2n - 5 + 11 chia hết cho 11 => 2n + 6 chia hết cho 11

=> 2.(n + 3) chia hết cho 11

Do (2,11)=1 => n + 3 chia hết cho 11

=> n = 11k + 8 ( k thuộc Z)

Vậy với n = 11k + 8 ( k thuộc Z) thì A rút gọn được

Với n khác 11k + 8 (k thuộc Z) thì A tối giản

Lucy Yumio
Xem chi tiết
Nguyễn Thùy Trang
Xem chi tiết
Kiệt Nguyễn
20 tháng 3 2019 lúc 22:02

a) Để B là phân số thì 2n + 1 \(\ne\) 0

\(\Leftrightarrow2n\ne0-1\)

\(\Leftrightarrow2n\ne-1\)

\(\Leftrightarrow n\ne\frac{-1}{2}\)

Vậy với mọi n \(\in\) Z  thì B là phân số.

b) Để B \(\in\) Z thì \(\left(3n+2\right)⋮\left(2n+1\right)\)

\(\Leftrightarrow\left[2\left(3n+2\right)\right]⋮\left(2n+1\right)\)

\(\Leftrightarrow\left[6n+4\right]⋮\left(2n+1\right)\)

\(\Leftrightarrow\left[6n+3+1\right]⋮\left(2n+1\right)\)

\(\Leftrightarrow\left[3\left(2n+1\right)+1\right]⋮\left(2n+1\right)\)

Vì \(\left[3\left(2n+1\right)\right]⋮\left(2n+1\right)\) nên \(1⋮\left(2n+1\right)\)

\(\Rightarrow2n+1\inƯ\left(1\right)=\left\{-1;1\right\}\)

Lập bảng:

\(2n+1\)\(-1\)\(1\)
\(n\)\(-1\)\(0\)

Vậy \(n\in\left\{-1;0\right\}\) thì B là số nguyên.

Trần Phương Vân
Xem chi tiết
ĐỖ Xuân tùng
Xem chi tiết
Katherine Lilly Filbert
26 tháng 5 2015 lúc 12:19

A=\(\frac{4n+1}{2n+3}=\frac{2\left(2n+3\right)-5}{2n+3}=2+\frac{-5}{2n+3}\)

Để A nguyên thì \(\frac{-5}{2n+3}\) phải nguyên

=> \(2n+3\inƯ\left(-5\right)=\left\{1;-1;5;-5\right\}\)

=> \(n\in\left\{-1;-2;1;-4\right\}\)

Trung
Xem chi tiết
Nguyễn Đức Trí
22 tháng 7 2023 lúc 17:16

 \(\dfrac{4n^2-9}{2n+3}=\dfrac{\left(2n+3\right)\left(2n-3\right)}{2n+3}=2n-3\)

Để \(\dfrac{4n^2-9}{2n+3}\) là số nguyên

\(\Rightarrow2n-3\in Z\)

\(\Rightarrow\forall n\in Z\)