Cho 2 đường tròn (O,R) và (O'R') tiếp xúc trong với nhau tại A(R>R'). Qua điểm B bất kì trên (O') vẽ tiếp tuyến với (O') cắt (O) tại M và N , AB cắt (O) tại C . Chứng minh rằng:
a MN⊥OC.
b) AC là Tia phân giác của góc MAN.
Câu 1: Cho 2 đường tròn (O;R) và (O’;r), R > r
Trong các phát biểu sau phát biểu nào là phát biểu sai
A. Hai đường tròn (O) và (O’) cắt nhau khi và chỉ khi R - r < OO' < R + r
B. Hai đường tròn (O) và (O’) tiếp xúc ngoài khi và chỉ khi OO’ = R - r
C. Hai đường tròn (O) và (O’) tiếp xúc trong khi và chỉ khi OO’ = R - r
D. Hai đường tròn (O) và (O’) gọi là ngoài nhau khi và chỉ khi OO’ > R + r
Câu 2: Gọi d là khoảng cách 2 tâm của (O, R) và (O', r) với 0 < r < R. Để (O) và (O') tiếp xúc trong thì:
A. R - r < d < R + r
B. d = R - r
C. d > R + r
D. d = R + r
Câu 3: Cho hai đường tròn tâm O và O' có d=OO' và bán kính lần lượt R và R'.Trong các câu sau,câu nào sai?
A.Điều kiện cần và đủ để hai đường tròn đã cho cắt nhau là: R-R'<d<R+R'
B.Điều kiện cần và đủ để hai đường tròn đã cho cắt nhau là: |R-R'|<d<R+R'
C.Điều kiện cần và đủ để hai đường tròn đã cho cắt nhau là R,R' và d là độ dài ba cạnh của một tam giác
D.Trong ba câu trên,chỉ có câu a là câu sai
Câu 4: Cho hai đường tròn đồng tâm O,bán kính R và 2R.Gọi P là một điểm nằm ngoài đường tròn (O,2R).Vé đường tròn tâm P bán kính PO,cắt đường tròn (O,2R) tại 2 điểm C,D.OC cắt đường tròn (O;R) tại E.OD cắt đường tròn (O;R) tại F.Khi đó:
(1) EO=EC=R và OF=FD=R
(2) PE là đường cao của tam giác POC
(3) PF là đường cao của tam giác POD
Trong các câu trên:
A.Chỉ có câu (1) đúng
B.Chỉ có câu (2) đúng
C.Chỉ có câu (3) đúng
D.Cả ba câu đều đúng
E.Tất cả ba câu đều sai
Câu 5: Cho đường tròn (O). A, B, C là 3 điểm thuộc đường tròn sao cho tam giác ABC cân tại A. Phát biểu nào sau đây đúng
Tiếp tuyến của đường tròn tại A là
A. Đi qua A và vuông góc AB
B. Đi qua A và song song BC
C. Đi qua A và song song AC
D. Đi qua A và vuông góc BC
Bài 2: Hai đường tròn (O; R) và ( O' ;R^ , ) sao cho R >R^ , tiếp xúc ngoài tại C. Gọi AC và BC là hai đường kính đi qua C của đường tròn (O) và đường tròn (O’). DE là dây cung của đường tròn (O) vuông góc với AB tại trung điểm M của AB. Gọi giao điểm thứ 2 của đường thẳng DC với dường tròn (O’) là F.
a) Tứ giác AEBD là hình gì?
b) Chứng minh B, F, D thẳng hàng; Chứng minh MDBF nội tiếp
c) DB cắt đường (O’) tại G. Chứng minh DF, EG và AB đồng quy.
d) Chứng minh MF = 1/2 * DE tuyến của đường tròn (O’) và MF là tiếp tuyến của đường tròn (O')
Cho 2 đường tròn (O,R)và (O',R') cắt nhau tại A và B sao cho đường thẳng Oa là tiếp tuyến của đường tròn (O',R') biết R=12cm R'=5cm a,
a. cmr O'A là tiếp tuyến của đường tròn (O,R) b,
b. tính độ dài các đoạn thẳng AB
c. Trên đường thằng AB lấy điểm M ngoài đoạn thẳng AB. Vẽ các tiếp tuyến MT và MT’ kẻ từ M lần lượt đến hai đường tròn (O,R)và (O',R') (T và T’ là tiếp điểm). Chứng minh rằng MT=MT’.
a: Xét (O;R) có
OA là bán kính
O'A vuông góp với OA
Do đó: O'A là tiếp tuyến của (O)
b: \(OO'=\sqrt{12^2+5^2}=13\left(cm\right)\)
AH=5*12/13=60/13(cm)
=>AB=120/13(cm)
Cho 2 đường tròn (O,R)và (O',R') cắt nhau tại A và B sao cho đường thẳng Oa là tiếp tuyến của đường tròn (O',R') biết R=12cm R'=5cm a,
a. cmr O'A là tiếp tuyến của đường tròn (O,R) b,
b. tính độ dài các đoạn thẳng AB
c. Trên đường thằng AB lấy điểm M ngoài đoạn thẳng AB. Vẽ các tiếp tuyến MT và MT’ kẻ từ M lần lượt đến hai đường tròn (O,R)và (O',R') (T và T’ là tiếp điểm). Chứng minh rằng MT=MT’.
a: Xét (O;R) có
OA là bán kính
O'A vuông góp với OA
Do đó: O'A là tiếp tuyến của (O)
b: \(OO'=\sqrt{12^2+5^2}=13\left(cm\right)\)
AH=5*12/13=60/13(cm)
=>AB=120/13(cm)
cho 2 đường tròn (o r) và (o' r') tiếp xúc ngoài tại A.Một tiếp tuyến chung tại BC của (o),(o') . a) chứng minh đường tròn đường kính BC tiếp xúc với đường thẳng OO' và đường tròn OO' tiếp xúc với đường thẳng BC.b) Tính BC theo R và R'
k bít làm
k có câu c
Robert Chen ko bt lm thì phắn
Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
vào thống kê
hc tốt
Cho đường tròn (O;R) và (O';R/2) tiếp xúc trong tại A. Tia Ot cắt đường tròn O và O' lần lượt tại B và C. Chứng minh 2 cung AB và AC thuộc 2 đường tròn có độ dài bằng nhau
M.Bài 6.Cho hai đường tròn (O; R) và (O; R) tiếp xúc ngoài nhau tại M. Hai đường tròn (O) và (O) cùng tiếp xúc trong với đường tròn lớn (O; R) lần lượt tại E và F. Tính bán kính Rbiết chu vi tam giác OOOlà 20cm.
Bài 7.Cho đường tròn (O; 9cm). Vẽ 6 đường tròn bằng nhau bán kính R đều tiếp xúc trong với (O) và mỗi đường tròn đều tiếp xúc với hai đường khác bên cạnh nó. Tính bán kính R.
Bài 8.Cho hai đường tròn đồng tâm. Trong đường tròn lớn vẽ hai dây bằng nhau AB = CD và cùng tiếp xúc với đường tròn nhỏ tại M và N sao cho AB CD tại I. Tính bán kính đường tròn nhỏ biết IA = 3cm, IB = 9cm.
Bài 9.Cho ba đường tròn O O O1 2 3( ),( ),( )cùng có bán kính R và tiếp xúc ngoài nhau từng đôi một. Tính diện tích tam giác có ba đỉnh là ba tiếp điểm.
Bài 10.Cho hai đường tròn (O) và (O) tiếp xúc nhau tại A. Qua A vẽ một cát tuyến cắt đường tròn (O) tại B và cắt đường tròn (O) tại C. Từ B vẽ tiếp tuyến xyvới đường tròn (O). Từ C vẽ đường thẳng uv song song với xy. Chứng minh rằng uvlà tiếp tuyến của đường tròn (O).
Bài 11.Cho hình vuông ABCD. Vẽ đường tròn (D; DC) và đường tròn (O) đường kính BC, chúng cắt nhau tại một điểm thứ hai là E. Tia CE cắt AB tại M, tia BE cắt AD tại N. Chứng minh rằng:a) N là trung điểm của AD.b) M là trung điểm của AB.
Bài 12.Cho góc vuông xOy. Lấy các điểm I và K lần lượt trên các tia Oxvà Oy. Vẽ đường tròn (I; OK) cắt tia Oxtại M (I nằm giữa O và M). Vẽ đường tròn (K; OI) cắt tia Oytại N (K nằm giữa O và N).
a) Chứng minh hai đường tròn (I) và (K) luôn cắt nhau.
b) Tiếp tuyến tại M của đường tròn (I) và tiếp tuyến tại N của đường tròn (K) cắt nhau tại C. Chứng minh tứ giác OMCN là hình vuông.
c) Gọi giao điểm của hai đường tròn (I), (K) là A và B. Chứng minh ba điểm A, B, C thẳng hàng.d) Giả sử I và K theo thứ tự di động trên các tia Oxvà Oysao cho OI + OK = a(không đổi). Chứng minh rằng đường thẳng AB luôn đi qua một điểm cố định.
Cho hai đường tròn (O; R) và (O'; r) tiếp xúc ngoài (R > r). Hai tiếp tuyến chung AB và A'B' của hai đường tròn (O),(O') cắt nhau tại P(A và A' thuộc đường tròn (O'), B và B' thuộc đường tròn (O)). Biết PA = AB = 4 cm. Tính diện tích hình tròn (O').
(O; R) và (O’; R’) tiếp xúc ngoài với nhau
⇒ OO’ = R + r.
O’A ⊥ BP, OB ⊥ BP ⇒ O’A // OB
⇒ ΔPAO’ ΔPBO
⇒ OB = 2.O'A hay R = 2.r
và OP = 2.O’P ⇒ O’P = OO’ = R + r = 3.r
ΔO’AP vuông tại A nên:
O ’ P 2 = O ’ A 2 + A P 2
⇔ ( 3 r ) 2 = r 2 + 4 2 ⇔ 8 r 2 = 16 ⇔ r 2 = 2
Diện tích hình tròn (O’; r) là: S = π . r 2 = 2 π ( c m 2 ) .
Cho hai đường tròn (O; R) và (O'; r) tiếp xúc ngoài (R > r). Hai tiếp tuyến chung AB và A'B' của hai đường tròn (O),(O') cắt nhau tại P(A và A' thuộc đường tròn (O'), B và B' thuộc đường tròn (O)). Biết PA = AB = 4 cm. Tính diện tích hình tròn (O').
(O; R) và (O’; R’) tiếp xúc ngoài với nhau
⇒ OO’ = R + r.
O’A ⊥ BP, OB ⊥ BP ⇒ O’A // OB
⇒ ΔPAO’ ΔPBO
⇒ OB = 2.O'A hay R = 2.r
và OP = 2.O’P ⇒ O’P = OO’ = R + r = 3.r
ΔO’AP vuông tại A nên: O ' P 2 = O ' A 2 + A P 2
⇔ ( 3 r ) 2 = r 2 + 4 2 ⇔ 8 r 2 = 16 ⇔ r 2 = 2
Diện tích hình tròn (O’; r) là: S = π · r 2 = 2 π cm 2
Cho hai đường tròn đồng tâm (O; R) và (O' R') với R > R'. Tiếp tuyến của đường tròn (O' R') tại A cắt đường tròn (O; R) tại B và C. Tia OA cắt đường tròn (O; R) tại E. So sánh \(\stackrel\frown{EB}\) và \(\stackrel\frown{EC}\)