tìm giới hạn sau :
\(\lim\limits_{x\rightarrow-1}\left(\frac{2x^3+3x+1}{x^2-1}\right)\)
Tính các giới hạn sau :
1/\(\lim\limits_{x\rightarrow-\infty}\left(\sqrt{4x^2-3x+1}+2x\right)\)
2/\(lim\left(\sqrt{4n^2+2n+1}-2n+2020\right)\)
2: \(=lim\left(\dfrac{4n^2+2n+1-4n^2}{\sqrt{4n^2+2n+1}+2n}+2020\right)\)
\(=lim\left(\dfrac{2n+1}{\sqrt{4n^2+2n+1}+2n}+2020\right)\)
\(=lim\left(\dfrac{2+\dfrac{1}{n}}{\sqrt{4+\dfrac{2}{n}+\dfrac{1}{n^2}}+2}+2020\right)\)
\(=\dfrac{2}{2+2}+2020=\dfrac{2}{4}+2020=2020.5\)
đ11b1c3
tìm giới hạn
\(\lim\limits_{x\rightarrow+\infty}\frac{3x\left(2x-1\right)\left(2-3x\right)}{\left(3x-1\right)^3}\)
tìm các giới hạn sau:
a; \(\lim\limits_{x\rightarrow1}\frac{2x^4-5x^3+3x^2+1}{3x^4-8x^3+6x^2-1}\)
b; \(\lim\limits_{x\rightarrow1}\frac{x^3-3x^2+2}{x^4-4x+3}\)
c; \(\lim\limits_{x\rightarrow1}\frac{x^3-2x-1}{x^5-2x-1}\)
d; \(\lim\limits_{x\rightarrow-1}\frac{\left(x+2\right)^2-1}{x^2-1}\)
b.
\(\lim\limits_{x\to 1+}\frac{x^3-3x^2+2}{x^4-4x+3}=\lim\limits_{x\to 1+}\frac{(x-1)(x^2-2x-2)}{(x-1)^2(x^2+2x+3)}=\lim\limits_{x\to 1+}\frac{x^2-2x-2}{(x-1)(x^2+2x+3)}\)
\(=\lim\limits_{x\to 1+}\frac{x^2-2x-2}{x^2+2x+3}.\lim\limits_{x\to 1+}\frac{1}{x-1}=\frac{-1}{2}.(+\infty)=-\infty \)
Tương tự \(\lim\limits_{x\to 1-}\frac{x^3-3x^2+2}{x^4-4x+3}=+\infty \)
Do đó không tồn tại \(\lim\limits_{x\to 1}\frac{x^3-3x^2+2}{x^4-4x+3}\)
c.
\(\lim\limits_{x\to 1}\frac{x^3-2x-1}{x^5-2x-1}=\frac{1^3-2.1-1}{1^5-2.1-1}=1\)
d.
\(\lim\limits_{x\to -1}\frac{(x+2)^2-1}{x^2-1}=\lim\limits_{x\to -1}\frac{(x+2-1)(x+2+1)}{(x-1)(x+1)}=\lim\limits_{x\to -1}\frac{x+3}{x-1}=-1\)
a.
\(\lim\limits_{x\to 1+}\frac{2x^4-5x^3+3x^2+1}{3x^4-8x^3+6x^2-1}=\lim_{x\to 1+}\frac{2x^4-5x^3+3x^2+1}{(x-1)^3(3x+1)}=\lim\limits _{x\to 1+}\frac{2x^4-5x^3+3x^2+1}{3x+1}.\lim\limits_{x\to 1+}\frac{1}{(x-1)^3}\)
\(=\frac{1}{4}.(+\infty)=+\infty \)
Hoàn toàn tương tự:
\(\lim\limits_{x\to 1-}\frac{2x^4-5x^3+3x^2+1}{3x^4-8x^3+6x^2-1}=-\infty \)
Do đó: \(\lim\limits_{x\to 1+}\frac{2x^4-5x^3+3x^2+1}{3x^4-8x^3+6x^2-1}\neq \lim\limits_{x\to 1-}\frac{2x^4-5x^3+3x^2+1}{3x^4-8x^3+6x^2-1}\) nên không tồn tại \(\lim\limits_{x\to 1}\frac{2x^4-5x^3+3x^2+1}{3x^4-8x^3+6x^2-1}\)
b.
\(\lim\limits_{x\to 1+}\frac{x^3-3x^2+2}{x^4-4x+3}=\lim\limits_{x\to 1+}\frac{(x-1)(x^2-2x-2)}{(x-1)^2(x^2+2x+3)}=\lim\limits_{x\to 1+}\frac{x^2-2x-2}{(x-1)(x^2+2x+3)}\)
\(=\lim\limits_{x\to 1+}\frac{x^2-2x-2}{x^2+2x+3}.\lim\limits_{x\to 1+}\frac{1}{x-1}=\frac{-1}{2}.(+\infty)=-\infty \)
Tương tự \(\lim\limits_{x\to 1-}\frac{x^3-3x^2+2}{x^4-4x+3}=+\infty \)
Do đó không tồn tại \(\lim\limits_{x\to 1}\frac{x^3-3x^2+2}{x^4-4x+3}\)
c.
\(\lim\limits_{x\to 1}\frac{x^3-2x-1}{x^5-2x-1}=\frac{1^3-2.1-1}{1^5-2.1-1}=1\)
d.
\(\lim\limits_{x\to -1}\frac{(x+2)^2-1}{x^2-1}=\lim\limits_{x\to -1}\frac{(x+2-1)(x+2+1)}{(x-1)(x+1)}=\lim\limits_{x\to -1}\frac{x+3}{x-1}=-1\)
Tìm các giới hạn sau:
\(\lim\limits_{x\rightarrow-\infty}\) \(\dfrac{\sqrt{x^6+2}}{3\text{x}^3-1}\)
\(\lim\limits_{x\rightarrow+\infty}\) \(\dfrac{\sqrt{x^6+2}}{3\text{x}^3-1}\)
\(\lim\limits_{x\rightarrow-\infty}\) \(\left(\sqrt{2\text{x}^2+1}+x\right)\)
\(\lim\limits_{x\rightarrow1}\) \(\dfrac{2\text{x}^3-5\text{x}-4}{\left(x+1\right)^2}\)
Bài 1
a. \(\lim\limits_{x\rightarrow-\infty}\frac{\sqrt{4x^2}+1}{3x-1}\)
b. \(\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{9x^2+x+1}-\sqrt{4x^2+2x+1}}{x+1}\)
c. \(\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{x+2x+3}+4x+1}{\sqrt{4x^2+1}+2-x}\)
d. \(\lim\limits_{x\rightarrow+\infty}\frac{3x-2\sqrt{x}+\sqrt{x^4-5x}}{2x^2+4x-5}\)
Bài 2
a. \(\lim\limits_{x\rightarrow-\infty}\frac{2x+1}{x-1}\)
b. \(\lim\limits_{x\rightarrow-\infty}\frac{2x^3+3}{x^3-2x^2+1}\)
c. \(\lim\limits_{x\rightarrow+\infty}\frac{\left(3x^2+1\right)\left(5x+3\right)}{\left(2x^3-1\right)\left(x+4\right)}\)
Bài 1:
\(a=\lim\limits_{x\rightarrow-\infty}\frac{2\left|x\right|+1}{3x-1}=\lim\limits_{x\rightarrow-\infty}\frac{-2x+1}{3x-1}=\lim\limits_{x\rightarrow-\infty}\frac{-2+\frac{1}{x}}{3-\frac{1}{x}}=-\frac{2}{3}\)
\(b=\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{9+\frac{1}{x}+\frac{1}{x^2}}-\sqrt{4+\frac{2}{x}+\frac{1}{x^2}}}{1+\frac{1}{x}}=\frac{\sqrt{9}-\sqrt{4}}{1}=1\)
\(c=\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{1+\frac{2}{x}+\frac{3}{x^2}}+4+\frac{1}{x}}{\sqrt{4+\frac{1}{x^2}}+\frac{2}{x}-1}=\frac{1+4}{\sqrt{4}-1}=5\)
\(d=\lim\limits_{x\rightarrow+\infty}\frac{\frac{3}{x}-\frac{2}{x\sqrt{x}}+\sqrt{1-\frac{5}{x^3}}}{2+\frac{4}{x}-\frac{5}{x^2}}=\frac{1}{2}\)
Bài 2:
\(a=\lim\limits_{x\rightarrow-\infty}\frac{2+\frac{1}{x}}{1-\frac{1}{x}}=2\)
\(b=\lim\limits_{x\rightarrow-\infty}\frac{2+\frac{3}{x^3}}{1-\frac{2}{x}+\frac{1}{x^3}}=2\)
\(c=\lim\limits_{x\rightarrow+\infty}\frac{x^2\left(3+\frac{1}{x^2}\right)x\left(5+\frac{3}{x}\right)}{x^3\left(2-\frac{1}{x^3}\right)x\left(1+\frac{4}{x}\right)}=\frac{15}{+\infty}=0\)
giới hạn \(\lim\limits_{x\rightarrow+\infty}\dfrac{\left(x-1\right)^2\left(2x^3+3x\right)}{4x-x^5}=\dfrac{a}{b}\). tìm a,b biết a/b tối giản
\(\lim\limits_{x\rightarrow+\infty}\dfrac{\left(1-\dfrac{1}{x}\right)^2\left(2+\dfrac{3}{x^2}\right)}{\dfrac{4}{x^4}-1}=\dfrac{2}{-1}=-2\)
Tìm các giới hạn sau :
a) \(\lim\limits_{x\rightarrow-2}\dfrac{x+5}{x^2+x-3}\)
b) \(\lim\limits_{x\rightarrow3^-}\sqrt{x^2+8x+3}\)
c) \(\lim\limits_{x\rightarrow+\infty}\left(x^3+2x^2\sqrt{x}-1\right)\)
d) \(\lim\limits_{x\rightarrow-1}\dfrac{2x^3-5x-4}{\left(x+1\right)^2}\)
Tìm các giới hạn sau :
a) \(\lim\limits_{x\rightarrow2}\dfrac{x+3}{x^2+x+4}\)
b) \(\lim\limits_{x\rightarrow-3}\dfrac{x^2+5x+6}{x^2+3x}\)
c) \(\lim\limits_{x\rightarrow4^-}\dfrac{2x-5}{x-4}\)
d) \(\lim\limits_{x\rightarrow+\infty}\left(-x^3+x^2-2x+1\right)\)
e) \(\lim\limits_{x\rightarrow-\infty}\dfrac{x+3}{3x-1}\)
f) \(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{x^2-2x+4}-x}{3x-1}\)
Tính các giới hạn
a) \(\lim\limits_{x\rightarrow+\infty}\sqrt[3]{x^3+3x^2}-\sqrt{x^2-2x}\)
b) \(\lim\limits_{x\rightarrow+\infty}\sqrt[n]{\left(x+a_1\right)\left(x+a_2\right)...\left(x+a_n\right)}-x\)
\(\lim\limits_{x\rightarrow+\infty}\left(\sqrt[n]{\left(x+a_1\right)\left(x+a_2\right)...\left(x+a_n\right)}-x\right)\\ =\lim\limits_{x\rightarrow+\infty}\left(\dfrac{\left(x+a_1\right)\left(x+a_2\right)...\left(x+a_n\right)-x^n}{\sqrt[n]{\left(\left(x+a_1\right)\left(x+a_2\right)...\left(x+a_n\right)\right)^{n-1}}+...+x^{n-1}}\right)\)
= hệ số xn-1 trên tử/hệ số xn-1 dưới mẫu = \(\dfrac{a_1+a_2+...+a_n}{n}\)