\(\frac{1}{630}< \frac{1}{5^x}\le0,4\)
C/m A = \(\frac{1}{630}x^9-\frac{1}{21}x^7+\frac{13}{30}x^5-\frac{82}{63}x^3+\frac{32}{35}x\) nhận giá trị nguyên với mọi giá trị nguyên của x.
\(A=\frac{x^9-30x^7+273x^5-820x^3+576x}{630}=\frac{x\left(x^2-1\right)\left(x^2-4\right)\left(x^2-9\right)\left(x^2-16\right)}{630}\)
\(=\frac{\left(x-4\right)\left(x-3\right)\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}{630}\)
Tử số là tích của 9 số nguyên liên tiếp nên chia hết cho cả 2; 5; 7; 9 hay chia hết 630
Vậy A luôn nguyên
Cho đa thức \(P\left(x\right)=\frac{1}{630}x^9-\frac{1}{21}x^7+\frac{13}{30}x^5-\frac{82}{63}x^3+\frac{32}{35}x\)
CM: Đa thức nhận giá trị tuyệt đối với mọi x nguyên
Cho đa thức \(P\left(x\right)=\frac{1}{630}x^9-\frac{1}{21}x^7+\frac{13}{30}x^5-\frac{82}{63}x^3+\frac{32}{35}x\)
CM: Đa thức nhận giá trị tuyệt đối với mọi x nguyên
Tìm x :
a, x+ ( x-1 ) + (x -2 ) +......+(x-50 ) =255
b, 3+6+9+.......+x=630
c,3.x - x + \(\frac{1}{2}\).x = 5\(\frac{1}{3}\)
Ai làm nhanh mk tích cho !!!!!!!!
a. x + (x - 1) + (x - 2) + ... + (x - 50) = 255
=> x + x - 1 + x - 2 + ... + x - 50 = 255
=> 51.x - (1 + 2 + ... + 50) = 255
=> 51.x - (50 + 1).50:2 = 255
=> 51.x - 1275 = 255
=> 51.x = 255 + 1275
=> 51.x = 1530
=> x = 30
b. 3 + 6 + 9 + ... + x = 630
Số số hạng: (x - 3) : 3 + 1 = x /3 (số hạng)
=> (x + 3).(x/3):2 = 630
=> (x + 3).(x/3) = 1260
=> x.(x +3)/3 = 1260
=> x.(x + 3) = 3780
=> x.(x + 3) = 60.63
=> x.(x + 3) = 60.(60 + 3)
=> x = 60
c. 3.x - x + 1/2.x = 5\(\frac{1}{3}\)
=> x.(3 - 1 + 1/2) = 16/3
=> x.5/2 = 16/3
=> x = 16/3 : 5/2
=> x = 16/3 . 2/5
=> x = 32/15
x+(x-1)+(x-2)+............+(x-50)= 255
=> (x-50)+(x-49)+(x-48)+............+x=255
=> (x+x-50).51:2=255
=> (x+x-50).51=255.2
=> 2x-50=510:51
=> 2x=10+50
=> x=60:2
=> x=30
Cho \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
CMR: \(\frac{1}{x^5}+\frac{1}{y^5}+\frac{1}{z^5}=\frac{1}{x^5+y^5+z^5}\)
Áp dụng BĐT Cauchy dạng Engel , ta được
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^3}{x+y+z}=\frac{1}{x+y+z}\)
Dấu "=" xảy ra khi \(\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\) => \(x=y=z\).(*)
Áp dụng BĐT Cauchy dạng Engel , ta được : \(\frac{1}{x^5}+\frac{1}{y^5}+\frac{1}{z^5}\ge\frac{\left(1+1+1\right)^3}{x^5+y^5+z^5}\) \(=\frac{1}{x^5+y^5+z^5}\)
Dấu "=" xảy ra khi x=y=z ( đã có ở (*) )
Vậy \(\frac{1}{x^5}+\frac{1}{y^5}+\frac{1}{z^5}=\frac{1}{x^5+y^5+z^5}\) ( đpcm) với x=y=z
Bài này gần giống câu hỏi số 965642 bn xem đi nhé
\(A=\left(6:\frac{3}{5}-1\frac{1}{6}x\frac{6}{7}\right):\left(4\frac{1}{5}x\frac{10}{11}+5\frac{2}{11}\right)\)\(B=\left(1-\frac{1}{2}\right)x\left(1-\frac{1}{4}\right)x.......x\left(1-\frac{1}{2015}\right)x\left(1-\frac{1}{2016}\right)\)
\(C=5\frac{9}{10}:\frac{3}{2}-\left(2\frac{1}{3}x4\frac{1}{2}-2x2\frac{1}{3}\right):\frac{7}{4}\)
tim x
a)\(2\frac{3}{4}x-1\frac{5}{8}x=1\)
b)\(2\frac{3}{4}x-1\frac{5}{8}x=1\)
c)\(\frac{3}{2}x-\frac{2}{5}=\frac{1}{3}x-\frac{1}{4}\)
d)\(2x-\frac{1}{4}=\frac{5}{6}-\frac{1}{2}x\)
e)\(\frac{-5}{6}+3x=\frac{2}{3}-\frac{1}{2}x\)
f)\(\frac{5}{2}x-\frac{3}{2}=x+\frac{29}{10}\)
g)\(\frac{2}{3}+\frac{7}{3}x=\frac{5}{4}x+\frac{1}{6}\)
h)\(\frac{1}{3}.x+\frac{2}{5}\left(x-1\right)=0\)
giup mk nha moi nguoi
3) \(\frac{1-x}{x+1}-\frac{3+2x}{x+1}=0\)
13) \(\frac{x+2}{x}-\frac{x^2+5x+4}{x\left(x+2\right)}=\frac{x}{x+2}\)
14) \(\frac{1}{x+1}-\frac{5}{x-2}=\frac{20}{\left(x+1\right)\left(2-x\right)}\)
16) \(\frac{x+5}{x-5}-\frac{x-5}{x+5}=\frac{20}{x^2-25}\)
17) \(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x^2-4}\)
18) \(\frac{x-1}{x}+\frac{1}{x+1}=\frac{2x-1}{2x^2+2}\)
19) \(\frac{2}{x+1}-\frac{3x+1}{\left(x+1\right)}=\frac{1}{\left(x+1\right)\left(x-2\right)}\)
20) \(\frac{x+5}{3x-6}-\frac{1}{2}=\frac{2x-3}{2x-4}\)
Tính nhanh : \(\frac{1}{2}x\frac{1}{2}+\frac{1}{2}x\frac{1}{3}+\frac{1}{3}x\frac{1}{4}+\frac{1}{4}x\frac{1}{5}+\frac{1}{5}x\frac{1}{6}\)
???????????????????????????????????????????????????????????????????????????^_^
= 1/1 - 1/2 + 1/2 - 1/3 +.. + 1/5 - 1/6
= 1/1 - 1/6
= 5/6