\(2\sqrt{x^2-16}+\sqrt{x^2-9}=\frac{10}{x-4}\)
\(\frac{1}{\sqrt{x+1}+1}+\frac{1}{\sqrt{x+4}+2}+\frac{1}{\sqrt{x+9}+3}+\frac{1}{\sqrt{x+16}+4}=\frac{1}{\sqrt{x+100}+10}\)
tìm x=?
Bằng 1 phép so sánh đơn giản \(\frac{1}{\sqrt{x+1}+1}>\frac{1}{\sqrt{x+100}+10}\) ; \(\forall x\ge-1\)
Ta suy ra luôn pt này vô nghiệm
biểu thức A = \(\frac{\sqrt{x}}{\sqrt{x}-2}+\frac{3}{\sqrt{x}+2}-\frac{9\sqrt{x}-10}{x-4}\) ( x>=0, x khác 16)
a, rút gon A
b,tìm A bt x = 4-\(2\sqrt{3}\)
\(a,A=\frac{\sqrt{x}}{\sqrt{x}-2}+\frac{3}{\sqrt{x}+2}-\frac{9\sqrt{x}-10}{x-4}\left(x\ge0;x\ne16\right)\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{3\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{9\sqrt{x}-10}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{3\sqrt{x}-6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{9\sqrt{x}-10}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{x+2\sqrt{x}+3\sqrt{x}-6-9\sqrt{x}+10}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{x-4\sqrt{x}+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{\left(\sqrt{x}\right)^2-2.\sqrt{x}.2+2^2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}-2}{\sqrt{x}+2}\)
Vây...
\(b,\)Ta có:\(x=4-2\sqrt{3}=\left(1-\sqrt{3}\right)^2\)
Thay \(x=\left(1-\sqrt{3}\right)^2\)vào A ta được:
\(A=\frac{\sqrt{\left(1-\sqrt{3}\right)^2}-2}{\sqrt{\left(1-\sqrt{3}\right)^2}+2}=\frac{\sqrt{3}-1-2}{\sqrt{3}-1+2}=\frac{\sqrt{3}-3}{\sqrt{3}-1}=\frac{-\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}=-\sqrt{3}\)
Tìm x :
h/ \(\sqrt{x+5}-10=-4\)
i/ \(\sqrt{x-5}+2\sqrt{4x-20}-\frac{1}{3}\sqrt{9x-45}=12\)
j/ \(3\sqrt{2x}+\frac{1}{7}\sqrt{98x}-\sqrt{72x}+4=0\)
k/ \(\sqrt{4x^2-20}-\frac{1}{3}\sqrt{x^2-5}+\sqrt{\frac{9x^2-45}{16}}-\frac{1}{2}\sqrt{\frac{25x^2-125}{36}}=4\)
l/ \(\sqrt{4x+4}+\sqrt{9x+9}-\sqrt{x+1}=4\)
m/ \(\sqrt{16\left(x+1\right)}+\sqrt{4x+4}=16-\sqrt{x+1}+\sqrt{9x+9}\)
Giúp mk với nhé mn
h)
ĐKXĐ: $x\geq -5$
PT $\Leftrightarrow \sqrt{x+5}=6$
$\Rightarrow x+5=36\Rightarrow x=31$ (thỏa mãn)
i) ĐKXĐ: $x\geq 5$
PT \(\Leftrightarrow \sqrt{x-5}+4\sqrt{x-5}-\sqrt{x-5}=12\)
\(\Leftrightarrow 4\sqrt{x-5}=12\Leftrightarrow \sqrt{x-5}=3\Rightarrow x-5=9\Rightarrow x=14\) (thỏa mãn)
j)
ĐKXĐ: $x\geq 0$
PT $\Leftrightarrow 3\sqrt{2x}+\sqrt{2x}-6\sqrt{2x}+4=0$
$\Leftrightarrow -2\sqrt{2x}+4=0$
$\Leftrightarrow \sqrt{2x}=2$
$\Rightarrow x=2$ (thỏa mãn)
k) ĐK: $x^2\geq 5$
PT $\Leftrightarrow 2\sqrt{x^2-5}-\frac{1}{3}\sqrt{x^2-5}+\frac{3}{4}\sqrt{x^2-5}-\frac{5}{12}\sqrt{x^2-5}=4$
$\Leftrightarrow 2\sqrt{x^2-5}=4$
$\Leftrightarrow \sqrt{x^2-5}=2$
$\Rightarrow x^2-5=4$
$\Leftrightarrow x^2=9\Rightarrow x=\pm 3$ (đều thỏa mãn)
l) ĐKXĐ: $x\geq -1$
PT $\Leftrightarrow 2\sqrt{x+1}+3\sqrt{x+1}-\sqrt{x+1}=4$
$\Leftrightarrow 4\sqrt{x+1}=4$
$\Leftrightarrow \sqrt{x+1}=1$
$\Rightarrow x+1=1$
$\Rightarrow x=0$
m)
ĐKXĐ: $x\geq -1$
PT $\Leftrightarrow 4\sqrt{x+1}+2\sqrt{x+1}=16-\sqrt{x+1}+3\sqrt{x+1}$
$\Leftrightarrow 6\sqrt{x+1}=16+2\sqrt{x+1}$
$\Leftrightarrow 4\sqrt{x+1}=16$
$\Leftrightarrow \sqrt{x+1}=4$
$\Rightarrow x=15$ (thỏa mãn)
6) \(\sqrt{x^2+12x+36}=-x-6\)
7) \(\sqrt{9x^2-12x+4}=3x-2\)
8) \(\sqrt{16-24x+9x^2}=2x-10\)
9) \(\sqrt{x^2-6x+9}==2x-3\)
10) \(\sqrt{x^2-3x+\dfrac{9}{4}}=\dfrac{3}{x}x-4\)
6) ĐKXĐ: \(x\le-6\)
\(\sqrt{\left(x+6\right)^2}=-x-6\Leftrightarrow\left|x+6\right|=-x-6\)
\(\Leftrightarrow x+6=x+6\left(đúng\forall x\right)\)
Vậy \(x\le-6\)
7) ĐKXĐ: \(x\ge\dfrac{2}{3}\)
\(pt\Leftrightarrow\sqrt{\left(3x-2\right)^2}=3x-2\Leftrightarrow\left|3x-2\right|=3x-2\)
\(\Leftrightarrow3x-2=3x-2\left(đúng\forall x\right)\)
Vậy \(x\ge\dfrac{2}{3}\)
8) ĐKXĐ: \(x\ge5\)
\(pt\Leftrightarrow\sqrt{\left(4-3x\right)^2}=2x-10\)\(\Leftrightarrow\left|4-3x\right|=2x-10\)
\(\Leftrightarrow4-3x=10-2x\Leftrightarrow x=-6\left(ktm\right)\Leftrightarrow S=\varnothing\)
9) ĐKXĐ: \(x\ge\dfrac{3}{2}\)
\(pt\Leftrightarrow\sqrt{\left(x-3\right)^2}=2x-3\Leftrightarrow\left|x-3\right|=2x-3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=2x-3\left(x\ge3\right)\\x-3=3-2x\left(\dfrac{3}{2}\le x< 3\right)\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=2\left(tm\right)\end{matrix}\right.\)
Giair phương trình
a, \(3\sqrt{\left(x+1\right)\left(x-3\right)}+x^2-2x=7\)
b, \(\sqrt{2x+3}+\sqrt{x+1}=3x+2\sqrt{2x^2+5x+3}-16\)
c, \(\left(x^2-4\right)+4\left(x-2\right).\sqrt{\frac{x+2}{x-2}}=3\)
d, \(\frac{9}{x^2}+\frac{2x}{\sqrt{2x^2+9}}=1\)
e, \(3\sqrt{2+x}-6\sqrt{2-x}+4\sqrt{4-x^2}=10-3x\)
Giải pt sau :
1, \(\sqrt{x+1}+\sqrt{4-x}+\sqrt{\left(x+1\right)\left(4-x\right)}=5\)
2, \(\sqrt{x+4}+\sqrt{x-4}=2x-12+2\sqrt{x^2-16}\)
3, \(\sqrt{x+\sqrt{6x-9}}+\sqrt{x-\sqrt{6x-9}}=\sqrt{6}\)
4, \(\frac{4}{x+\sqrt{x^2+x}}-\frac{1}{x-\sqrt{x^2+x}}=\frac{3}{x}\)
5, \(\sqrt{x^2+x+4}+\sqrt{x^2+x+1}=\sqrt{2x^2+2x+9}\)
1.
ĐK: \(-1\le x\le4\)
Đặt \(\sqrt{x+1}+\sqrt{4-x}=t\left(t\ge0\right)\)
\(\Leftrightarrow\sqrt{\left(x+1\right)\left(4-x\right)}=\frac{t^2-5}{2}\)
\(PT\Leftrightarrow t+\frac{t^2-5}{2}=5\Rightarrow t^2+2t-15=0\) \(\Rightarrow\left[{}\begin{matrix}t=3\\t=-5\left(l\right)\end{matrix}\right.\)
\(t=3\Rightarrow\sqrt{-x^2+3x+4}=2\) \(\Leftrightarrow-x^2+3x+4=4\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\) (tm)
2.
ĐK:\(x\ge4\)
Đặt \(\sqrt{x+4}+\sqrt{x-4}=t\left(t\ge0\right)\)
\(\Rightarrow2\sqrt{x^2-16}=t^2-2x\)
\(PT\Leftrightarrow t=2x-12+t^2-2x\)
\(\Leftrightarrow t^2-t-12=0\Rightarrow\left[{}\begin{matrix}t=4\\t=-3\left(l\right)\end{matrix}\right.\) Giải tiếp như trên.
Gpt :
1) \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)
2) \(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+s}+\sqrt{x+1}=16\)
3)\(\sqrt{4x+20}+\sqrt{x+5}-\frac{1}{3}\sqrt{9x+45}=4\)
4) \(\frac{1}{3}\sqrt{2x}-\sqrt{8x}+\sqrt{18x}-10=2\)
Bài 1. Tìm điều kiện các BPT sau
a, \(\sqrt{20-x}>\sqrt{3x-6}+1\)
b, \(\frac{\sqrt{9-x^2}}{x-1}>\frac{1}{\sqrt{x}}+1\)
c, \(x+\frac{x+1}{\sqrt{x-4}}>2-\frac{2}{x^2-25}\)
d, \(\sqrt{x}>\sqrt{-x}\)
e, \(3x+\frac{4}{\sqrt{x-5}}\le9+\frac{x}{x-6}\)
f, \(\frac{x+2}{10+3x^2}\ge7+\frac{4}{\left(3x+9\right)^2}\)
g, \(\frac{\sqrt{x+2}}{\sqrt{x-2}}+\frac{1}{\left(x-4\right)\left(x+6\right)}\le\frac{3}{\sqrt{8-x}}\)
h, \(\frac{\sqrt{x+6}}{\left|x\right|-\sqrt{x+6}}\ge\sqrt{16-2x}\)
tìm x biết
a)\(\frac{3\sqrt{x}-5}{2}-\frac{2\sqrt{x}-7}{3}+1=\sqrt{x}\)
b)\(\sqrt{9x^2+45}-\frac{1}{12}\sqrt{16x^2+80}+3\sqrt{\frac{x^2+5}{16}}-\frac{1}{4}\sqrt{\frac{25x^2+125}{9}}=9\)