1. Tính rồi rút gọn:
a) (x - 7)(x + 7) - x^2
2. Tìm x:
x(x - 4) - x^2 + 8 = 0
Bài 1: Tính :
4/5 x 6/7 2/9 x 1/2 1/2 x 8/3
7/9 x 6/5 8/7 x 5/9 10/11 x 22/15
Bài 2: Rút gọn rồi tính:
2/6 x 5/3 11/9 x 5/10 3/9 x 6/8
4/9 x 12/16 25/15 x 6/7 6/10 x 15/20
Bài 2:
a: 2/6x5/3=10/18=5/9
b: 11/9x5/10=55/90=11/18
c: 3/9x6/8=1/3x3/4=1/4
d: 4/9x12/16=48/144=1/3
e: 25/15x6/7=5/3x6/7=30/21=10/7
f: 6/10x15/20=90/200=9/20
Bài 1
4/5 x 6/7= 24/35
2/9 x 1/2= 2/18= 1/9
1/2 x 8/3= 8/6= 4/3
7/9 x 6/5= 42/45= 14/15
8/7 x 5/9= 40/63
10/11 x 22/15= 220/165= 4/3
Bài 2
2/6 x 5/3= 1/3 x 5/3=5/9
11/9 x 5/10= 11/9 x 1/2= 11/18
3/9 x 6/8= 1/3 x 3/4 =3/12= 1/4
4/9 x 12/16= 4/9 x 3/4= 12/36= 1/3
25/15 x 6/7= 5/3 x 6/7= 30/21= 10/7
6/10 x 15/20= 3/5 x 3/4= 9/20
bài 1
4/5 x 6/7 = 24/35
2/9 x 1/2 = 1/9
1/2 x 8/3 = 4/3
7/9 x 6/5 = 14/15
8/7 x 5/9 = 14/15
8/7 x 5/9 = 40/63
10/11 x 22/15 = 4/3
Bỏ dấu giá trị tuyệt đối rồi rút gọn:
A = |3x| - 3x + 2 khi x > 0 và x < 0
B = |x - 4| - x + 5 khi x < 4
C = |2x - 5| - 3x + 7 khi x > 5/4
D = 3 - 5x + |3 - 5x|
a: Khi x>0 thì A=3x-3x+2=2
Khi x<0 thì A=-3x-3x+2=-6x+2
b: B=4-x-x+5=9-2x
c: TH1: 5/4<x<5/2
A=5-2x-3x+7=12-5x
TH2: x>=5/2
A=2x-5-3x+7=-x+2
d: D=3-5x+|5x-3|
TH1: x>=3/5
D=3-5x+5x-3=0
TH2: x<3/5
D=3-5x+3-5x=6-10x
5,tính rồi rút gọn ;a,7/5 x 15/14 b,8/15 x 25/8 c,2/15 x 5/22
6,tìm diện tích 1 căn phòng có chieuf dài là 11/2 m và chiều rộng là 7/2.
bài 5
a)
`7/5xx15/14`
`=105/70=3/2`
b)
`8/15xx25/8`
`=200/120=5/3`
c)
`2/15xx5/22`
`=10/330`
`=1/33`
bài 6
chiều rộng cx là đơn vị m phải ko ạ?
diện tích căn phòng là
`11/2xx7/2=77/4(m^2)`
P = (\(\dfrac{2\sqrt{x}}{\sqrt{x}}-\dfrac{x-4}{\sqrt{x}+2}\)). \(\dfrac{1}{\sqrt{x}-2}\)
a Tìm đkxđ rồi rút gọn P
b Tìm x để P = \(\dfrac{2}{3}\)
c Tính p khi x = 8\(-\)2\(\sqrt{7}\)
a: ĐKXĐ: x>0; x<>4
\(P=\left(2-\sqrt{x}+2\right)\cdot\dfrac{1}{\sqrt{x}-2}=\dfrac{4-\sqrt{x}}{\sqrt{x}-2}\)
b: P=2/3
=>(4-căn x)/(căn x-2)=2/3
=>2căn x-4=12-3căn x
=>5căn x=16
=>x=256/25
c: Khi x=8-2căn 7 thì \(P=\dfrac{4-\sqrt{7}+1}{\sqrt{7}-1-2}=\dfrac{5-\sqrt{7}}{\sqrt{7}-3}=-4-\sqrt{7}\)
Tìm x :
6x(1-3x)+9x(2x-7)+171=0
tập hợp x:x+1/2015+x+2/2014=x+3/2013+x+4/2012
\(6x\left(1-3x\right)+9x\left(2x-7\right)+171=0\)
\(\Leftrightarrow6x-18x^2+18x^2-63x+171=0\)
\(\Leftrightarrow-57x=-171\)
\(\Leftrightarrow x=3\)
\(\frac{x+1}{2015}+\frac{x+2}{2014}=\frac{x+3}{2013}+\frac{x+4}{2012}\)
\(\Leftrightarrow\left(\frac{x+1}{2015}+1\right)+\left(\frac{x+2}{2014}+1\right)-\left(\frac{x+3}{2013}+1\right)-\left(\frac{x+4}{2012}+1\right)=0\)
\(\Leftrightarrow\)\(\frac{x+2016}{2015}+\frac{x+2016}{2014}-\frac{x+2016}{2013}+\frac{x+2016}{2012}=0\)
\(\Leftrightarrow\left(x+2016\right)\left(\frac{1}{2015}+\frac{1}{2014}-\frac{1}{2013}-\frac{1}{2012}\right)=0\)
\(\Leftrightarrow x+2016=0\) ( vì \(\frac{1}{2015}+\frac{1}{2014}-\frac{1}{2013}-\frac{1}{2012}\ne0\) )
\(\Leftrightarrow x=-2016\)
Rút gọn:
a. (2x-7)^2 - 4.(x-3).(x+3)
b. (x-3)^3 - (x+2)(x^2 -2x +4) + 9.(x+2)^2
c. (2x - 3)(4x^2 + 6x + 9).8x(x-2)(x+2)
b: Ta có: \(\left(x-3\right)^3-\left(x+2\right)\left(x^2-2x+4\right)+9\left(x+2\right)^2\)
\(=x^3-9x^2+27x-27-x^3-8+9x^2+36x+36\)
\(=53x+1\)
Rút gọn:
A= \(\dfrac{10\sqrt{x}}{x+3\sqrt{x}-4}\) - \(\dfrac{2\sqrt{x}-3}{\sqrt{x}+4}\) + \(\dfrac{\sqrt{x}+1}{1-\sqrt{x}}\) ( với x ≥ 0; x ≠ 1)
Với `x >= 0,x ne 1` có:
`A=[10\sqrt{x}]/[(\sqrt{x}-1)(\sqrt{x}+4)]-[2\sqrt{x}-3]/[\sqrt{x}+4]-[\sqrt{x}+1]/[\sqrt{x}-1]`
`A=[10\sqrt{x}-(2\sqrt{x}-3)(\sqrt{x}-1)-(\sqrt{x}+1)(\sqrt{x}+4)]/[(\sqrt{x}-1)(\sqrt{x}+4)]`
`A=[10\sqrt{x}-2x+2\sqrt{x}+3\sqrt{x}-3-x-4\sqrt{x}-\sqrt{x}-4]/[(\sqrt{x}-1)(\sqrt{x}+4)]`
`A=[-3x+10\sqrt{x}-7]/[(\sqrt{x}-1)(\sqrt{x}+4)]`
`A=[(\sqrt{x}-1)(-3\sqrt{x}-7)]/[(\sqrt{x}-1)(\sqrt{x}+4)]`
`A=[-3\sqrt{x}-7]/[\sqrt{x}+4]`
tìm x:
x :7/11 = 22
11/2 - 3/2 x X = 7/4
x = 22 x 7/11
x = 14
3/2 x X = 11/2 - 7/4
3/2 x X = 22/7
X = 22/7 : 3/2
X = 44/21
Tính bằng cách thuận tiên nhất:
1):(3/4 x 5/97 + 1/9 x 13/47) x (1/5 - 7/25 x 5/7)
2): 8/17 x 4/15 + 8/17 x 22/15 - 8/15 x 9/17
3): 2021/2 x 1/3 + 4042/4 x 1/5 + 6063/3 x 22/15
4); 4/7 x 2/13 + 8/13 :7/4 + 4/7 : 13/2 + 4/7 x 1/13
5): 2022 x 2021 - 1/ 2021 + 2022 x 2020
6): 18 x 123 + 9 x 4567 x 2 + 3 x 5310 x 6 / (2 + 4 + 6 + 8 + ...+20 + 22) + 48
7): A= 2021 x 2021 x 202020 - 2020 x 2020 x 20212021 / 2020 x 20192019
1) Ta có: \(\left(\dfrac{3}{4}\cdot\dfrac{5}{97}+\dfrac{1}{9}\cdot\dfrac{13}{47}\right)\cdot\left(\dfrac{1}{5}-\dfrac{7}{25}\cdot\dfrac{5}{7}\right)\)
\(=\left(\dfrac{3}{4}\cdot\dfrac{5}{97}+\dfrac{1}{9}\cdot\dfrac{13}{47}\right)\cdot\left(\dfrac{1}{5}-\dfrac{1}{5}\right)\)
=0
2) Ta có: \(\dfrac{8}{17}\cdot\dfrac{4}{15}+\dfrac{8}{17}\cdot\dfrac{22}{15}-\dfrac{8}{15}\cdot\dfrac{9}{17}\)
\(=\dfrac{8}{17}\left(\dfrac{4}{15}+\dfrac{22}{15}-\dfrac{9}{15}\right)\)
\(=\dfrac{8}{17}\cdot\dfrac{15}{15}=\dfrac{8}{17}\)
3) Ta có: \(\dfrac{2021}{2}\cdot\dfrac{1}{3}+\dfrac{4042}{4}\cdot\dfrac{1}{5}+\dfrac{6063}{3}\cdot\dfrac{22}{15}\)
\(=\dfrac{2021}{2}\left(\dfrac{1}{3}+\dfrac{1}{5}\right)+2021\cdot\dfrac{22}{15}\)
\(=\dfrac{2021}{2}\cdot\dfrac{8}{15}+\dfrac{2021}{2}\cdot\dfrac{44}{15}\)
\(=\dfrac{2021}{2}\cdot\dfrac{52}{15}\)
\(=\dfrac{52546}{15}\)
4) Ta có: \(\dfrac{4}{7}\cdot\dfrac{2}{13}+\dfrac{8}{13}:\dfrac{7}{4}+\dfrac{4}{7}:\dfrac{13}{2}+\dfrac{4}{7}\cdot\dfrac{1}{13}\)
\(=\dfrac{4}{7}\left(\dfrac{2}{13}+\dfrac{8}{13}+\dfrac{2}{13}+\dfrac{1}{13}\right)\)
\(=\dfrac{4}{7}\)