Cho m và n là các số nguyên dương:
A=2+4+6+...+2m/m
B=2+4+6+...+2n/n
Biết A<B, hãy so sánh m và n
Cho m,n là các số nguyên dương:
A= (2+4+6+...+2m)/m ; B = (2+4+6+...+2n)/n
Biết A<B, hãy so sánh m và n
Dấu / là bạn viết theo dấu chia dạng phân số nhưng ko pít viết trên MT đó mà mk cx z :)
Cho m và n là các số nguyên dương biết A>B. Hãy so sánh m và n biết:
A=(2+4+6+8+.....+2m)/m và B=(2+4+6+8+.....+2n)/n
Cho m và n là các số nguyên dương:
A=2+4+6+.....+2m/m ; B=2+4+6+.....+2n/n
Biết A<B, hãy so sánh m và n
Cho m và n là các số nguyên dương
A=2+4+6+...+2m/m
B=2+4+6+...+2n//n
Biết A<b, hãy so sánh m và n
\(A=\frac{\left(2+2m\right).m}{2m}=\frac{2\left(1+m\right).m}{2m}=1+m\)
\(B=\frac{\left(2+2n\right).n}{2n}=\frac{2\left(1+n\right).n}{2n}=1+n\)
do A<B=>1+m<1+n=>m<n
Ta có: A=\(\frac{\frac{\left(2m+2\right)\left[\frac{2m-2}{2}+1\right]}{2}}{m}=\frac{\frac{2\left(m+1\right)m}{2}}{m}=\frac{\left(m+1\right)}{m}\)=m+1
B= \(\frac{\frac{\left(2n+2\right)\left[\frac{2n-2}{2}+1\right]}{2}}{n}=\frac{\frac{2\left(n+1\right)n}{2}}{n}=\frac{\left(n+1\right)n}{n}\)=n+1
Mà A<B
=>m+1<n+1
=>m<n
Cho m và n là các số nguyên dương
\(A=\frac{2+4+6+...+2m}{m}\)
\(B=\frac{2+4+6+...+2n}{n}\)
Biết A < B, so sánh m và n
cho m,n thuộc Z+. biết rằng :A>B và A= (2+4+6+...+2m)/m; B=(2+4+6+...+2n)/n
HÃY SO SÁNH m VÀ n
CHÚ Ý: Z+ là tập hợp gồm các số nguyên dương ( N)
Ta có: A=\(\frac{\frac{\left(2m+2\right)\left[\frac{\left(2m-2\right)}{2}+1\right]}{2}}{m}\)=\(\frac{\left(m+1\right).m}{m}=m+1\)
B=\(\frac{\frac{\left(2n+2\right)\left[\frac{\left(2n-2\right)}{2}+2\right]}{2}}{m}=\frac{\left(n+1\right).n}{n}=n+1\)
Mà A>B =>m+1>n+1
Mà m, n thuộc Z+
=>m>n
cho m,n là các số nguyên dương
A=2+4+6+...+2m/m
B=2+4+6+...+2n/n
biết A>b so sánh m,n
giúp mình nhanh nhe minh tick cho
\(A=\left(\frac{2+2m.m}{2m}\right)=\left(\frac{2\left(1+m\right).m}{2m}\right)=1+m\)
\(B=\left(\frac{2+2n.n}{2n}\right)=\left(\frac{2\left(1.n\right).n}{2n}\right)=1.n\)
Do đó A < b => 1 + m < 1 + n => m < n
\(A=\frac{\left(2+2m\right).m}{2m}=\frac{2\left(1+m\right).m}{2m}=1+m\)
\(B=\frac{\left(2+2n\right).n}{2n}=\frac{2\left(1+n\right).n}{2n}=1+n\)
do A < b => 1 + m < 1 +n => m < n
Cho m và n là các số nguyên dương:
\(A=\frac{2+4+6+.....+2m}{m}\)
\(B=\frac{2+4+6+....+2n}{n}\)
Biết A>B hãy so sánh m và n
\(A=\frac{2+4+6+...+2m}{m}=\frac{\left(2+2m\right).m}{2m}=\frac{2\left(1+m\right).m}{2m}=m+1\)
\(B=\frac{2+4+6+....+2n}{n}=\frac{\left(2+2n\right).n}{2n}=\frac{2\left(1+n\right).n}{2n}=n+1\)
Mà A>B=>m+1>n+1=>m>n
Vậy m>n
. Cho m và n các số nguyên dương: Biết A < B, hãy so sánh m và n với:
\(A=\frac{2+4+6+....+2m}{m}\) \(B=\frac{2+4+6+...+2n}{n}\)
\(A=\frac{\frac{m\left(2+2m\right)}{2}}{m}=1+m\)
\(B=\frac{\frac{n\left(2+2n\right)}{2}}{n}=1+n\)
\(A< B\Rightarrow1+m< 1+n\Rightarrow m< n\)
cho m và n là các số nguyên dương
\(A=\frac{2+4+6+...+2m}{m}\) \(B=\frac{2+4+6+...+2n}{n}\)
Biết A<B hãy so sánh m và n
các bạn giúp mik với mik tick cho
Ta có : m và n là các số nguyên dương
Và \(A=\frac{2+4+6+...+2m}{m}=\frac{2.\left(1+2+....+m\right)}{m}=\frac{2.\left(m-1\right).m}{m}=2.\left(m-1\right)\)
B = \(\frac{2+4+6+...+2n}{n}=\frac{2.\left(1+2+3+...+n\right)}{n}=\frac{2.\left(n-1\right).n}{n}=2.\left(n-1\right)\)
Mà A < B
Nên 2 . ( m - 1 ) < 2 . ( n - 1 )
Do đó m - 1 < n - 1
Và m < n
Vậy m < n