tìm các cặp số nguyên x,y biết x^2+y^2=13
tìm các cặp số nguyên x,y ,biết:
x.y - 2.x +y=13
x.y-2.x+y=13
=> x(y-2)+y=13
=> x(y-2)+(y-2)=13-2
=> (x+1)(y-2)=11
=>x+1 và y-2 \(\in\)Ư(11)
Em tự lập bảng xét x,y nhé
\(x.y-2.x+y=13\)
\(x.\left(y-2\right)+y=13\)
\(x.\left(y-2\right)+y-2=13-2\)
\(x.\left(y-2\right)+\left(y-2\right)=11\)
\(\left(y-2\right).\left(x+1\right)=11\)
\(\Rightarrow y-2;x+1\) là ước của 11
Ta có bảng :
\(y-2\) | \(1\) | \(-1\) | \(11\) | \(-11\) |
\(x+1\) | \(11\) | \(-11\) | \(1\) | \(-1\) |
\(y\) | \(3\) | \(1\) | \(13\) | \(-9\) |
\(x\) | \(10\) | \(-12\) | \(0\) | \(-2\) |
Vậy y = 3 y = 1 y = 13 y = - 9
x = 10 x = - 12 x = 0 x = - 2
BÀi 1:Tìm các cặp số nguyên x,y biết 2x2+y2+xy=2(x+y)
Bài 2:Tìm các cặp số nguyên dương x,y biết x2+y2=3(x+y)
Bài 2: Giả sử tồn tại x,y nguyên dương t/m đề, khi đó pt cho tương đương:
\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x+3\right)^2+\left(2y+3\right)^2=18\)
Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x+3=3\\2y+3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\y=0\end{cases}}\)
Vậy cặp nghiệm nguyên t/m pt là (x;y) = (0;0)
Làm lại bài 2 :v (P/S: Bạn bỏ bài kia đi nhé)
\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x-3\right)^2+\left(2y-3\right)^2=18\)
Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x-3=3\\2y-3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=3\end{cases}}\)
Vậy (x;y) = (3;3)
tìm các cặp số nguyên dương x,y sao cho x^2 +x+13=y
tìm các cặp số nguyên x,y biết
(x+5)(y-2)=13
(3x-5)(y-6)=17
(x-1)(x+y)=33 cần gấp lắm ạ mong các bạn giúp
a) (x+5)(y-2)=13
Ta có: 13=1.13=-1.(-13)
Ta có bảng:
x+5 | 1 | -1 | |
y-2 | 13 | -13 | |
x | -4 | -6 | |
y | 15 | -11 |
Vậy các cặp(x;y) thỏa mãn là: (-4;15);(-6;-11)
Hok "tuốt" nha^^
Tìm các cặp số nguyên x,y tm 2x^2-8x=13-3y^2
\(2x^2-8x=13-3y^2\)
\(\Leftrightarrow2x^2-8x+8=21-3y^2\)
\(\Leftrightarrow2\left(x-4\right)^2=21-3y^2\) (1)
Do \(2\left(x-4\right)^2\ge0;\forall x\Rightarrow21-3y^2\ge0\)
\(\Rightarrow y^2\le7\Rightarrow y^2=\left\{0;1;4\right\}\)
Mặt khác vế trái của (1) là chẵn, 21 là số lẻ \(\Rightarrow3y^2\) lẻ
\(\Rightarrow y^2\) lẻ \(\Rightarrow y^2=1\Rightarrow y=\pm1\)
Thế vào (1) \(\Rightarrow2\left(x-4\right)^2=18\Rightarrow\left(x-4\right)^2=9\)
\(\Rightarrow\left[{}\begin{matrix}x=7\\x=1\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(7;1\right);\left(7;-1\right);\left(1;1\right);\left(1;-1\right)\)
Bài 1:Tìm các cặp số (x, y) nguyên biết :
a,(3-x).(4y+1)=20 b,x(y + 2) + 2y =6 c,6xy + 4x - 3y = 8
d,2xy - x + 2y - 13 = 0 e,2xy - 6X + 3 + y - 13 = 0
giúp mình với
mình cảm ơn
a, (3 - \(x\))(4y + 1) = 20
Ư(20) = { -20; -10; -5; -4; -2; -1; 1; 2; 4; 5; 10; 20}
Lập bảng ta có:
\(3-x\) | -20 | -10 | -5 | -4 | -2 | -1 | 1 | 2 | 4 | 5 | 10 | 20 |
\(x\) | 23 | 13 | 8 | 7 | 5 | 4 | 2 | 1 | -1 | -2 | -7 | -17 |
4\(y\) + 1 | -1 | -2 | -4 | -5 | -10 | -20 | 20 | 10 | 5 | 4 | 2 | 1 |
\(y\) | -1/2 | -3/4 | -5/4 | -6/4 | -11/4 | -21/4 | 19/4 | 9/4 | 1 | 3/4 | 1/4 | 0 |
Vậy các cặp \(x;y\) nguyên thỏa mãn đề bài là:
(\(x;y\)) =(-1; 1); (-17; 0)
b, \(x\left(y+2\right)\)+ 2\(y\) = 6
\(x\) = \(\dfrac{6-2y}{y+2}\)
\(x\in\) Z ⇔ 6 - \(2y⋮\) \(y\) + 2 ⇒-(2y + 4) +10 ⋮ \(y\) + 2 ⇒ -2(\(y\)+2) +10 ⋮ \(y\)+2
⇒ 10 ⋮ \(y\) + 2
Ư(10) = { -10; -5; -2; -1; 1; 2; 5; 10}
Lập bảng ta có:
\(y+2\) | -10 | -5 | -2 | -1 | 1 | 2 | 5 | 10 |
\(y\) | -12 | -7 | -4 | -3 | -1 | 0 | 3 | 8 |
\(x=\) \(\dfrac{6-2y}{y+2}\) | -3 | -4 | -7 | -12 | 8 | 3 | 0 | -1 |
Theo bảng trên ta có các cặp \(x;y\)
nguyên thỏa mãn đề bài lần lượt là:
(\(x;y\) ) =(-3; -12); (-4; -7); (-12; -3); (8; -1); (3; 0); (0;3 (-1; 8)
Tìm các cặp số nguyên(x;y)biết:\(6xy-3x+2y=13\)
\(6xy-3x+2y=13\)
\(\Leftrightarrow6xy-3x+2y-1=12\)
\(\Leftrightarrow3x\left(2y-1\right)+2y-1=12\)
\(\Leftrightarrow\left(3x+1\right)\left(2y-1\right)=12\)
Mặt khác \(2y-1\) luôn lẻ nên ta chỉ cần xét các cặp ước \(\left(12;1\right);\left(4;3\right);\left(-12;-1\right);\left(-4;-3\right)\)
3x+1 | -12 | -4 | 4 | 12 |
2y-1 | -1 | -3 | 3 | 1 |
x | -13/3 | -5/3 | 1 | 11/3 |
y | 0 | -1 | 2 | 1 |
Vậy có đúng 1 cặp số nguyên thỏa mãn đề bài là \(\left(x;y\right)=\left(1;2\right)\)
tìm các cặp số nguyên x,y biết x.(y-2) + y = 3
=> x(y-2) + y-2 = 1
=> (x+1)(y-2) = 1
Do x, y ∈ Z => x+1, y-2 ∈ Z
Lập bảng
x+1 | 1 | -1 |
y-2 | 1 | -1 |
x | 0 | -2 |
y | 3 | 1 |
(thử lại t/m)
Vậy (x,y) = (0,3); (-2,1)
tìm các cặp số nguyên (x;y) thỏa : \(\sqrt{x^2-2x+13}=y\)
Tìm các cặp số nguyên x, y biết:
x*y + 2*x + 2*y = 0