Tìm tất cả các số nguyên dương n sao cho 3n2 + 10n + 3 là lũy thừa của một số nguyên tố.
1) Cho hai số nguyên dương x,y lớn hơn 1, x khác y thỏa mãn \(x^2+y-1⋮y^2+x-1.\). Chứng minh rằng \(y^2+x-1\)không thể là lũy thừa của 1 số nguyên tố.
2) Tồn tại không các số nguyên dương x, y sao cho \(x^5+4^y\)là lũy thừa của 11.
3)Tìm tất cả các cặp số (x,y) nguyên dương thỏa mãn \(x^3-y^3=13\left(x^2+y^2\right)\)
4)Tìm tất cả các số nguyên dương n thỏa mãn \(n^5+n+1\)là lũy thừa của số nguyên tố.
5)Cho 2 số nguyên dương x,y thỏa mãn \(2x^2+11xy+12y^2\)là lũy thừa của số nguyên tố. Chứng minh rằng x=y.
6)Tìm tất cả các số nguyên tố p sao cho \(\frac{p+1}{2}\)và\(\frac{p^2+1}{2}\)đều là số chính phương.
7)Tìm tất cả các cặp số nguyên dương p, q với p nguyên tố thỏa mãn \(p^3+p^2+6=q^2+q\)
Tìm tất cả các số nguyên dương \(n\) sao cho biểu thức sau \(P=n^3+7n^2+25n+39\) nhận giá trị là lũy thừa của một số nguyên tố?
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán gợi ý và hỗ trợ em bài toán số học, em tham khảo với ạ!
Em cám ơn nhiều lắm ạ!
\(P=n^3+7n^2+25n+39=\left(n+3\right)\left(n^2+4n+13\right)\)
Hiển nhiên \(\left\{{}\begin{matrix}n+3>1\\n^2+4n+13>1\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}n+3=p^a\\n^2+4n+13=p^b\end{matrix}\right.\) với \(b>a>0\)
\(\Rightarrow\left\{{}\begin{matrix}n+3⋮p\\n^2+4n+13⋮p\end{matrix}\right.\) \(\Rightarrow n^2+4n+13-\left(n+3\right)\left(n+1\right)⋮p\)
\(\Rightarrow10⋮p\Rightarrow\left[{}\begin{matrix}p=2\\p=5\end{matrix}\right.\)
- TH1: \(p=2\Rightarrow n+3=2^a\)
Do n nguyên dương \(\Rightarrow n+3\ge4\Rightarrow a\ge2\Rightarrow2^a⋮4\)
\(\Rightarrow n+3⋮4\Rightarrow n=4k+1\)
Đồng thời \(n^2+4n+13=2^b\), hiển nhiên \(b>2\Rightarrow n^2+4n+13⋮4\)
\(\Rightarrow\left(4k+1\right)^2+4\left(4k+1\right)+13⋮4\)
\(\Rightarrow4k\left(4k+6\right)+18⋮4\) (vô lý)
\(\Rightarrow p=2\) không thỏa mãn
TH2: \(p=5\) \(\Rightarrow\left\{{}\begin{matrix}n+3=5^a\\n^2+4n+13=5^b\end{matrix}\right.\)
\(\Rightarrow\left(n+1\right)\left(n+3\right)+10=5^b\)
\(\Rightarrow5^a\left(5^a-2\right)+10=5^b\)
\(\Rightarrow5^{a-1}\left(5^a-2\right)+2=5^{b-1}\)
- Với \(a=1\Rightarrow b=2\)
- Với \(a>1\Rightarrow\) vế trái chia 5 dư 2, vế phải chia hết cho 5
\(\Rightarrow\) Không tồn tại a;b nguyên thỏa mãn
Vậy \(a=1\Rightarrow n=5^1-3=2\)
Tìm tất cả các số tự nhiên n sao cho \(n^3+3n^2+n+3\) là lũy thừa của một số nguyên tố
Tìm tất cả các số nguyên n sao cho: n^2+3n+1 là 1 lũy thừa của 3
Gọi n!+5=x3 (n,x thuộc N)
Xét n từ 0 đến 9: Chỉ có số 5 thỏa mãn điều kiện.
Xét n lớn hơn 10: Khi đó n! sẽ có ít nhất 2 thừa số 5 và 5 thừa số 2 => Sẽ có đuôi là 00 => n!+5 có đuôi là 05=> n!+5 chia hết cho 5=> x3 chia hết cho 5=> x chỉ có đuôi là 5 => x3 có đuôi là 25 hoặc 75=> không có số nào thỏa mãn đk.
Vậy n=5.
tìm tất cả số nguyên n sao cho n^2 + 3n + 1 là một lũy thừa của 3
Tìm tất cả các số nguyên dương n sao cho : n2015 + n + 1 là một số nguyên tố.
Xét n=1 thì biểu thức A = 3
Xét n>1:
Ta có: \(A=n^{2015}+n+1\)
\(=\left(n^{2015}-n^2\right)+\left(n^2+n+1\right)\)
\(=n^2\left(n^{2013}-1\right)+\left(n^2+n+1\right)\)
Dễ nhận ra \(n^{2013}-1⋮n^3-1\Rightarrow n^{2013}-1=k\left(n^3-1\right)=k\left(n-1\right)\left(n^2+n+1\right)\)
\(\Rightarrow n^2\left(n^{2013}-1\right)=k\left(n-1\right)n^2\left(n^2+n+1\right)=k'\left(n^2+n+1\right)\)
\(\Rightarrow A=k'\left(n^2+n+1\right)+\left(n^2+n+1\right)=\left(n^2+n+1\right)\left(k'+1\right)\)là hợp số
Vậy n=1
Tìm tất cả các số nguyên x sao cho: \(A=x^3+3x^2+x+3\)là lũy thừa số nguyên tố.
Bài này ở diễn đàn toán học nước ngoài thấy hay nên share.
Ta có \(A=\left(x+3\right)\left(x^2+1\right)\)
Mà A là lũy thừa số nguyên tố
=> \(\orbr{\begin{cases}x^2+1⋮x+3\\x+3⋮x^2+1\end{cases}}\)
+ Nếu \(x+3\ge x^2+1\)
=> \(-1\le x\le2\)
Thay vào ta được \(x=\left\{-1,0,1,2\right\}\)thỏa mãn đề bài
+ Nếu \(x+3< x^2+1\)
=> \(\orbr{\begin{cases}x>2\\x< -1\end{cases}}\)
=> \(x^2+1=k\left(x+3\right)\)với k là số nguyên
=> \(k=\frac{x^2+1}{x+3}=\frac{x^2-9+10}{x+3}=x-3+\frac{10}{x+3}\)là số nguyên
=> \(x+3\in\left\{\pm1,\pm2,\pm5,\pm10\right\}\)
=> \(x\in\left\{-13,-8,-5,-4,-2,-1,2,7\right\}\)
Kết hợp với ĐK và thay vào ta được
\(x\in\left\{-2,-1,0,1,2\right\}\)
7. Chứng minh rằng với mọi số tự nhiên lẻ n:
n2+ 4n + 8 chia hết cho 8
n3+ 3n2- n - 3 chia hết cho 48
8. Tìm tất cả các số tự nhiên n để :
n4+ 4 là số nguyên tố
n1994+ n1993+ 1 là số nguyên tố
tìm tất cả các số nguyên dương sao cho n^2015 +n+1 là 1 số nguyên tố
Với n nguyên dương.
Đặt A=\(n^{2015}+n+1=\left(n^{2015}-n^2\right)+\left(n^2+n+1\right)=n^2\left(n^{2013}-1\right)+\left(n^2+n+1\right)\)
\(=n^2\left(\left(n^3\right)^{.671}-1\right)+\left(n^2+n+1\right)\)
Mà : \(\left(n^3\right)^{.671}-1⋮\left(n^3-1\right)\)
và \(n^3-1=\left(n-1\right)\left(n^2+n+1\right)\)
=> \(\left(n^3\right)^{671}-1⋮\left(n^2+n+1\right)\)
=> \(A⋮n^2+n+1\)
Theo bài ra: A là số nguyên tố
=> \(\orbr{\begin{cases}A=n^2+n+1\\n^2+n+1=1\end{cases}\Leftrightarrow\orbr{\begin{cases}n^{2015}=n^2\\n^2+n=0\end{cases}\Leftrightarrow}}\orbr{\begin{cases}n=1\left(tm\right)\\n=0;n=-1\left(loai\right)\end{cases}}\)vì n nguyên dương
Vậy n=1