Cho hình thang ABCD (AB//CD) với AB=a; CD=b. Gọi I là giao điểm của hai đường chéo. Đường thẳng qua I và // với AB cắt hai cạnh bên tại E và F. CM: EF= 2ab/a+b
Bài 5: Cho hình thang ABCD (AB//CD), biết Ax,Dy lần lượt là phân giác của góc A, góc D của hình thang. Chứng minh Ax vuông góc với Dy
Bài 6: Cho hình thang ABCD (AB//CD,AB<CD). Qua B kẻ đường thẳng song song với AD cắt CD tại E. Chứng minh:
a) AD=BE , AB=DE
b) CD-AB=CE
c) BC+AD>CD_AB
Bài 5
\(\widehat{A}+\widehat{D}=180^o\) (Hai góc trong cùng phía bù nhau)
\(\widehat{DAx}=\widehat{BAx}=\dfrac{\widehat{A}}{2}\) (gt)
\(\widehat{ADy}+\widehat{CDy}=\dfrac{\widehat{D}}{2}\) (gt)
\(\Rightarrow\widehat{DAx}+\widehat{ADy}=\dfrac{\widehat{A}}{2}+\dfrac{\widehat{D}}{2}=\dfrac{180^o}{2}=90^o\)
Xét tg ADE có
\(\widehat{AED}=180^o-\left(\widehat{DAx}+\widehat{ADy}\right)=180^o-90^o=90^o\) (Tổng các góc trong của tg bằng 180 độ)
\(\Rightarrow Ax\perp Dy\)
Bài 6:
a/
Ta có
AB//CD => AB//DE
BE//AB (gt)
=> ABED là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
=> AB = DE; AD = BE (Trong hình bình hành các cạnh đối nhau thì bằng nhau)
b/
CD - DE = CE
Mà AB = DE (cmt)
=> CD - AB = CE
c/
Xét tg BCE có
BC+BE>CE (trong tg tổng độ dài 2 cạnh lớn hơn độ dài cạnh còn lại)
Mà CE = CD - DE và DE = AB (cmt) và BE = AD
=> BC+BE = BC + AD>CE = CD - AB
Gọi G là giao điểm của hai đường phân giác Ax và By
Ta có: \(\widehat{ADG}\) = \(\dfrac{1}{2}\)\(\widehat{ADE}\) ( vì DG là phân giác góc ADE)
\(\widehat{DAG}\) = \(\dfrac{1}{2}\)\(\widehat{DAB}\)( vì AG là phân giác góc DAB )
⇒ \(\widehat{ADG}\) + \(\widehat{DAG}\) = \(\dfrac{1}{2}\)\(\widehat{ADE}\) + \(\dfrac{1}{2}\)\(\widehat{DAB}\) = \(\dfrac{1}{2}\)(\(\widehat{ADE}\) + \(\widehat{DAB}\))
\(\widehat{ADE}\) + \(\widehat{DAB}\) = 1800 (vì hai góc là hai góc trong cùng phía)
⇒ \(\widehat{ADG}\) + \(\widehat{DAG}\) = \(\dfrac{1}{2}\) \(\times\) 1800 = 900
Xét tam giác ADG có: \(\widehat{GAD}\) + \(\widehat{ADG}\) + \(\widehat{DGA}\) = 1800 (tổng ba góc trong 1 tam giác bằng 1800)
⇒ \(\widehat{DGA}\) = 1800 - 900 = 900
Vậy tam giác ADG vuông tại G ⇒AE \(\perp\) DG (đpcm)
Cho hình thang ABCD có AB//CD, AB<CD, đường chéo BD vuông góc với cạnh BC. Kẻ BH vuông góc với CD. Tính diện tích hình thang ABCD biết BC=15cm, DC= 25cm. (ABCD ko phải hình thang cân)
1) cho hình thang ABCD có AB//CD;AB>CD;AC vuông góc với BD.Trên cạnh đáy AB lấy điểm M sao cho AM bằng độ dài đường trung bình của hình thang ABCD .CM:AC là tia phân giác góc A
2)Cho hình thang ABCD có góc A=góc B=90 độ ;BC=2AD=2AB .Gọi M là 1 điểm trên đáy nhỏ AB kẻ Mx vuông với MB .Mx cắt CD tại N.CM:MB=MN
GT: hình thang ABCD( AB < CD, AB//CD ). AH vuông góc với CD, AH= 13, CD= 25, góc A= 135. KL: tính diện tích hình thang ABCD
1/ cho hình thang cân ABCD ( AB // CD ), AB = 4cm, CD = 14cm, BC = 13cm. Tính BD.
2/ Cho hình thang cân ABCD (AB// CD ) AB = 9cm, CD = 15cm, AC vuông góc với BD. Tính đường cao BH.
cho hình thang abcd (ab//cd) có ah và bk là 2 đg cao của hình thang
a) cm DH=(cd-ab):2
b) bik AB= 6cm, CD=5cm, tính dh,ah và diện tích hình thang cân abcd
Cho hình thang cân ABCD (AB//CD) có AC vuông góc với BD tại O. Biết AB=4cm, CD=8cm. Tính diện tích hình thang ABCD.
Cho hình thang ABCD (AB//CD) có góc A= D , AB=AD= 3cm, CD = 6cm . tính các góc của hình thang ABCD
Bài 1: Cho hình thang vuông ABCD có góc A = góc D = 90o , AB = 4cm , CD = 9cm. Tính BD (biết BD vuông góc với BC)
Bài 2: Cho hình thang ABCD , AB//CD , BD là đường cao của hình thang, góc A + góc C = 90o , AB= 1cm, CD= 3cm. Tính AD và BC
Bài 3: Cho hình chữ nhật ABCD, AB= 4cm, AD= 3cm. Gọi E và F là hình chiếu của A và C trên BD. Tính EF