cho tam giác ABC . CMR
b^2 - c^2 = ab.cos C - ac . cos B
1.Cho tam giác ABC nhọn có đường cao AH.Chứng minh rằng:
1.BH=AB.cos B 2.BC=AB cos B+AC cos C
2.Cho tam giác ABC vuông tại A.Tính độ dài các cạnh AB và AC nếu biết:
1.BC=15cm,sin B=3/5 2.BC=13cm,cosb=5/13
Bài 1:
1: Xét ΔAHB vuông tại H có \(\cos B=\dfrac{BH}{AB}\)
nên \(BH=AB\cdot\cos B\)
2: Xét ΔAHC vuông tại H có \(\cos C=\dfrac{CH}{AC}\)
nên \(CH=AC\cdot\cos C\)
\(AB\cdot\cos B+AC\cdot\cos C=BH+CH=BC\)
Bài 1. cho tam giác ABC nhọn biết: AB=c, BC=a, AC=b
CMR: a) \(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{sinC}\)
b) \(a^2=b^2+c^2-2bc.\cos A\)
c) \(c=b.\cos A+a.\cos B\)
Bài 2. Cho tam giác ABC vuông tại A, gọi M, N lần lượt thuộc AB, AC sao cho AB=3AM; AC=3AN. Biết \(BN=\sin\alpha,CM=\cos\alpha\left(0^0< \alpha< 90^0\right)\)
CMR: \(\frac{3\sqrt{10}}{10}\)
Ai giúp mk ikk
1) a) Từ C dựng đường cao CF
Ta có: \(\sin A=\frac{CF}{b};\sin B=\frac{CF}{a}\)\(\Rightarrow\)\(\frac{\sin A}{\sin B}=\frac{\frac{CF}{b}}{\frac{CF}{a}}=\frac{a}{b}\)\(\Leftrightarrow\)\(\frac{a}{\sin A}=\frac{b}{\sin B}\) (1)
Từ A dựng đường cao AH
Có: \(\sin B=\frac{AH}{c};\sin C=\frac{AH}{b}\)\(\Rightarrow\)\(\frac{\sin B}{\sin C}=\frac{\frac{AH}{c}}{\frac{AH}{b}}=\frac{b}{c}\)\(\Leftrightarrow\)\(\frac{b}{\sin B}=\frac{c}{\sin C}\) (2)
(1), (2) => đpcm
b) từ a) ta có: \(\hept{\begin{cases}\sin A=\frac{CF}{b}\\\cos A=\frac{AF}{b}\end{cases}\Leftrightarrow\hept{\begin{cases}CF=b.\sin A\\AF=b.\cos A\end{cases}}}\)
Có: \(BF=c-AF=c-b.\cos A\)
Py-ta-go:
\(a^2=BF^2+CF^2=\left(c-b.\cos A\right)^2+\left(b.\sin A\right)^2=c^2+b^2.\cos^2A+b^2.\sin^2A-2bc.\cos A\)
\(=b^2\left(\sin^2A+\cos^2A\right)+c^2-2bc.\cos A=b^2+c^2-2bc.\cos A\) (đpcm)
c) Có: \(\hept{\begin{cases}\cos A=\frac{AF}{b}\\\cos B=\frac{BF}{a}\end{cases}\Rightarrow b.\cos A+a.\cos B=b.\frac{AF}{b}+a.\frac{BF}{a}=AF+BF=c}\)
bài 2 mk có làm r bn ib mk gửi link nhé
Cho tam giác ABC vuông ở A. CMR: \(\frac{AB}{AC}=\frac{\cos B}{\cos C}\)
Tam giác ABC vuông ở A, ta có:
\(\cos B=\frac{AB}{BC}\); \(\cos C=\frac{AC}{BC}\).
Vậy \(\frac{\cos B}{\cos C}=\frac{AB}{BC}:\frac{AC}{BC}=\frac{AB}{BC}.\frac{BC}{AC}=\frac{AB}{AC}\).
Ta có: \(\cos B=\frac{AB}{AC}\)
\(\cos C=\frac{AC}{BC}\)
\(\Rightarrow\frac{\cos B}{\cos C}=\frac{\frac{AB}{BC}}{\frac{AC}{BC}}=\frac{AB}{BC}.\frac{BC}{AC}=\frac{AC}{BC}\left(đpcm\right)\)
\(\Rightarrow\frac{AB}{AC}=\frac{\cos B}{\cos C}\)
Cho tam giác nhọn ABC Có đường cao AH,BI,CK . CMR Diện tích HIK=(1-Cos^2(a)-Cos^2(b)-Cos^2(c)) . S ABC
Cho tam giác ABC vuông tại A. góc C nhỏ hơn 45 độ, trung tuyến AM, đường cao AH. Biết BC = a, AC = b và AH = h
a) Tính sin C, cos C, sin 2C theo a,b,h
b) CMR sin 2C = 2 sin C. cos C
Help me T.T
Cho tam giác ABC nhọn. CMR: cos2A+cos2B+cos2C < 1
1. cho tam giác ABC có góc B = góc C. CMR AB=AC.
2. cho tam giác ABC có AB=AC. CMR góc B = góc C
minh vua tik ban do , ban tik lai minh di
Bài 3: Cho tam giác ABC, thỏa mãn 2∠B + 3∠C = 180o
. CMR: BC^2 = BC.AC + AB^2
Bài 4: Cho tam giác ABC. Chứng minh rằng các đường trung tuyến kẻ từ B và C vuông góc với
nhau khi và chỉ khi b^2 + c^2 = 5a^2
Bài 5: CMR: cos 36o = (1 + √5)/4
Bài 6: Cho tam giác ABC có (BC = a, CA = b, AB = c). Trung tuyến AD, đường cao BH và
phân giác CE đồng quy. CMR: (a + b)(a^2 + b^2 − c^2) = 2ab2
4/Gọi hai trung tuyến kẻ từ B, C là BM và CN, chúng cắt nhau tại O
Bây giờ ta sẽ chứng minh rằng : Nếu hai trung tuyến đó vuông góc thì b^2 + c^2 = 5a^2 , từ đó suy ra điều ngược lại (vì mệnh đề này đúng với thuận và đảo)
Gỉa sử BM vuông góc với CN tại O
Ta đặt OM = x => OB = 2x và => OC =2y
AB^2/4 + AC^2/4= NB^2 + MC^2 = ON^2 + OB^2 + OM^2 + OC^2 = 5(x^2 + y^2)
=> AB^2 + AC^2 = 20(x^2 + y^2)
Mà BC^2 = OC^2 + OB^2 = 4(x^2 + y^2)
Suy ra : AB^2 + AC^2 = 5.4(x^2 + y^2) = 5BC^2 hay b^2 + c^2 = 5a^2
ta có điều ngược lại là nếu b^2 + c^2 = 5a^2 thì hai trung tuyến vuông góc(cái này tự làm ngược nha bn)
5
Vẽ tam giác ABC cân tại A có góc A bằng 36 độ. Và BC=1.Khi đó góc B = góc C = 72 độ.
Vẽ BD phân giác góc B , DH vuông góc AB. Đặt AH=BH=x, ta có AB=AC=2x và DC=2x-1
Cm được tam giác ABD và BCD cân => AD=BD=BC=1
cos A = cos 36 = AH/AD=x/1=x
Vì BD là đường phân giác nên AD/DC=AB/AC => \(\frac{1}{2x-1}=\frac{2x}{1}\)
=> \(4x^2-2x-1=0\Leftrightarrow\left(2x-\frac{1}{2}\right)^2-\left(\frac{\sqrt{5}}{2}\right)^2=0\)
\(\Leftrightarrow\left(2x-\frac{1}{2}-\frac{\sqrt{5}}{2}\right)\left(2x-\frac{1}{2}+\frac{\sqrt{5}}{2}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{5}+1}{4}\left(N\right)\\x=\frac{1-\sqrt{5}}{4}< 0\left(L\right)\end{cases}}\)
Vậy cos 36o = (1 + √5)/4
Cho tam giác ABC có ba góc nhọn với các đường cao AD, BE, CF cắt nhau tại H.
a)CMR:
Tam giác AEF đồng dạng với tam giác ABC. \(\frac{S_{AEF}}{S_{ABC}}=\cos^2A\)
b)CMR:\(S_{DÈF}=\left(1-\cos^2A-\cos^2B-\cos^2C\right)S_{ABC}\)
c)Cho biết AH=k.HD. CMR: \(\tan B.\tan C=k+1\)
d)CMR:\(\frac{HA}{BC}+\frac{HB}{AC}+\frac{HC}{AB}\ge\sqrt{3}\)