Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Lugia
Cõu 25: a) Biết rằng a, b, c Z . Hỏi 3 số 3a 2 .b.c 3 ; -2a 3 b 5 c; -3a 5 b 2 c 2 có thể cùng âmkhông?Cho hai tích -2a 5 b 2 và 3a 2 b 6 cùng dấu. Tìm dấu của a?Cho a và b trái dấu, 3a 2 b 1980 và -19a 5 b 1890 cùng dấu. Xác định dấu của a và b?b) Cho x Z và E (1 – x) 4 . (-x). Với điều kiện nào của x thì E 0; E > 0; E < 0Cõu 26: Chứng minh giá trị biểu thức sau không phụ thuộc vào a(3a + 2).(2a – 1) + (3 – a).(6a + 2) – 17.(a – 1)Câu 27: Trong 3 số nguyên x, y, z có một số dương, một...
Đọc tiếp

Những câu hỏi liên quan
Nguyễn Thị Thu Hà
Xem chi tiết
Nguyễn Thị Thu Hà
2 tháng 2 2017 lúc 22:19

ai giup minh voi mai phai nop roi

Nguyen Minh Thanh
6 tháng 3 2020 lúc 6:22

câu 1 

xét tích 3 số

=(3a^2.b.c^3).(-2a^3b^5c).(-3a^5.b^2.c^2)

=[3.(-2).(-3)].(a^2.a^3.a^5).(b.b^5.b^2).(c.c^3.c^2)

=18.a^10.b^8.c^5 bé hơn hoặc bằng 0

=>tích 3 số đó không thể cùng âm=>3 số đó ko cùng âm dc

bây giờ mk đi học rùi tí về mk làm típ nhá

Khách vãng lai đã xóa
Nguyễn Ngọc Anh
Xem chi tiết
La Na Ivy
2 tháng 2 2017 lúc 13:52

a)−3a5b2c2 âm khi a sẽ dương.
3a2bc âm khi bc âm .
−2a3b5c=−2a3b4bc ta có a3 dương bcbc âm bdương ⇒−2a3b4bc dương .
⇒ Các số thõa mãn đề bài không thể cùng âm.
 

Yến Nguyễn
Xem chi tiết
trần đức thuận
30 tháng 4 2018 lúc 13:36

cuc cuc

Nguyễn Nga
Xem chi tiết
Hải Yến
Xem chi tiết
Nguyễn Thanh Hằng
Xem chi tiết
Sunnychanh
15 tháng 3 2020 lúc 16:41

Chương II : Số nguyên

Khách vãng lai đã xóa
Sunnychanh
15 tháng 3 2020 lúc 16:42

Chương II : Số nguyên

Khách vãng lai đã xóa
_@Lyđz_
Xem chi tiết
ha do
Xem chi tiết
ngonhuminh
4 tháng 2 2017 lúc 21:24

\(\left(3.a^2.b.c\right)\left(-2a^3.b^5.c\right)\left(3a^5.b^2.c^2\right)=-18\left(a^{10}.b^8.c^4\right)< 0\)=> có thể cùng (-) 

Huy Hoàng
4 tháng 2 2017 lúc 23:28

Đặt điều kiện: \(a\ne b\ne c\).

Số thứ nhất: 3 . a2 . b . c3 

Trường hợp 1: Nếu a, b, c cùng dấu dương (hoặc âm)

=> 3.  a2 . b . c3 cùng dấu dương.

Trường hợp 2: Nếu một trong ba số a, b, c dấu dương, còn lại dấu âm (có thể gọi là một dấu dương, hai dấu âm)

=> 3 . a2 . b . c3 cùng dấu dương.

Trường hợp 3: Một dấu âm, hai dấu dương.

=> 3. a2 . b . c3 cùng dấu âm.

Vậy \(\orbr{\begin{cases}3.a^2.b.c^3\in N\\3.a^2.b.c^3\in Z;\ne N\end{cases}}\).

Số thứ hai: (-2) . a3 . b5 . c

Trường hợp 1: a, b, c cùng dấu âm.

=> (-2) . a3 . b5 . c cùng dấu dương.

Trường hợp 2: a, b, c cùng dấu dương.

=> (-2) . a3 . b5 . c cùng dấu âm.

Trường hợp 3: Một dấu dương, hai dấu âm

=> (-2) . a3 . b5 . c cùng dấu âm.

Trường hợp 4: Một dấu âm, hai dấu dương

=> (-2) . a3 . b5 . c cùng dấu dương.

Vậy \(\orbr{\begin{cases}\left(-2\right).a^3.b^5.c\in N\\\left(-2\right).a^3.b^5.c\in Z;\ne N\end{cases}}\).

Số thứ ba: 3 . a5 . b2 . c2

Trường hợp 1: a, b, c cùng dấu dương

=> 3 . a5 . b2 . c2 cùng dấu dương.

Trường hợp 2: a, b, c cùng dấu âm

=> 3 . a5 . b2 . c2 cùng dấu âm.

Trường hợp 3: Một dấu dương, hai dấu âm

=> 3 . a5 . b2 . c2 cùng dấu dương.

Trường hợp 4: Một dấu âm, hai dấu dương

=> 3 . a5 . b2 . c2 cùng dấu âm.

Vậy \(\orbr{\begin{cases}3.a^5.b^2.c^2\in N\\3.a^5.b^2.c^2\in Z;\ne N\end{cases}}\).

Ta xem trường hợp của 3 số trên và thấy: 3 số trên có thể cùng dấu dương, và cùng dấu âm.

=> 3 . a2 ; (-2) . a3 . b5 . c ; 3 . a5 . b2 . c2 cùng dấu.

LÊ HOÀNG ANH
Xem chi tiết