Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
dekhisuki
Xem chi tiết
Phạm Dương Ngọc Nhi
Xem chi tiết
Phạm Dương Ngọc Nhi
13 tháng 2 2020 lúc 8:50

Ai giải hộ câu này nhanh đi mà

Khách vãng lai đã xóa
Kakarot Songoku
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 6 2020 lúc 17:49

\(\frac{3}{2}\ge x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)

\(P\ge3\sqrt[3]{\frac{x\left(yz+1\right)^2.y\left(zx+1\right)^2.z\left(xy+1\right)^2}{z^2\left(zx+1\right)x^2\left(xy+1\right)y^2\left(yz+1\right)}}=3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}}\)

Xét \(Q=\frac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}=\frac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{\sqrt{xy}.\sqrt{yz}.\sqrt{zx}}\)

Đặt \(\left(\sqrt{xy};\sqrt{yz};\sqrt{zx}\right)=\left(a;b;c\right)\Rightarrow a+b+c\le\frac{3}{2}\Rightarrow abc\le\frac{1}{8}\)

\(Q=\frac{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}{abc}=\frac{1+a^2b^2c^2+a^2+b^2+c^2+a^2b^2+b^2c^2+c^2a^2}{abc}\)

\(Q\ge\frac{1+a^2b^2c^2+3\sqrt[3]{a^2b^2c^2}+3\sqrt[3]{a^4b^4c^4}}{abc}=\frac{1}{abc}+abc+3\left(\frac{1}{\sqrt[3]{abc}}+\sqrt[3]{abc}\right)\)

\(Q\ge abc+\frac{1}{64abc}+3\left(\sqrt[3]{abc}+\frac{1}{4\sqrt[3]{abc}}\right)+\frac{63}{64abc}+\frac{9}{4\sqrt[3]{abc}}\)

\(Q\ge2\sqrt{\frac{abc}{64abc}}+6\sqrt{\frac{\sqrt[3]{abc}}{4\sqrt[3]{abc}}}+\frac{63}{64.\frac{1}{8}}+\frac{9}{4.\sqrt[3]{\frac{1}{8}}}=\frac{125}{8}\)

\(\Rightarrow P\ge3\sqrt[3]{Q}\ge3\sqrt[3]{\frac{125}{8}}=\frac{15}{2}\)

\(P_{min}=\frac{15}{2}\) khi \(a=b=c=\frac{1}{2}\) hay \(x=y=z=\frac{1}{2}\)

nguyen kim chi
Xem chi tiết

Áp dụng bđt AM-GM ta có

\(P\ge3\sqrt[3]{\frac{xyz\left(xy+1\right)^2.\left(yz+1\right)^2.\left(zx+1\right)^2}{x^2y^2z^2\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}}=3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}}=A\)

  Ta có   \(A=3\sqrt[3]{\left(\frac{xy+1}{x}\right)\left(\frac{yz+1}{y}\right)\left(\frac{zx+1}{z}\right)}=3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\)

Áp dụng bđt AM-GM ta có

\(A\ge3\sqrt[3]{8\sqrt{\frac{xyz}{xyz}}}=3.2=6\)

\(\Rightarrow P\ge6\)

Dấu "=" xảy ra khi x=y=z=\(\frac{1}{2}\)

Khách vãng lai đã xóa
zZz Cool Kid_new zZz
18 tháng 2 2020 lúc 18:31

Làm tiếp bài ღ๖ۣۜLinh's ๖ۣۜLinh'sღ] ★we are one★ chớ hình như bị ngược dấu ó.Do mình gà nên chỉ biết cô si mù mịt thôi ạ

\(3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\)

\(=3\sqrt[3]{\left(y+\frac{1}{4x}+\frac{1}{4x}+\frac{1}{4x}+\frac{1}{4x}\right)\left(z+\frac{1}{4y}+\frac{1}{4y}+\frac{1}{4y}+\frac{1}{4y}\right)\left(x+\frac{1}{4z}+\frac{1}{4z}+\frac{1}{4z}+\frac{1}{4z}\right)}\)

\(\ge3\sqrt[3]{5\sqrt[5]{\frac{y}{256x^4}}\cdot5\sqrt[5]{\frac{z}{256y^4}}\cdot5\sqrt[5]{\frac{x}{256z^4}}}\)

\(=3\sqrt[3]{125\sqrt[5]{\frac{xyz}{256^3\left(xyz\right)^4}}}\)

\(=15\sqrt[3]{\sqrt[5]{\frac{1}{256^3\left(xyz\right)^3}}}\)

\(\ge15\sqrt[15]{\frac{1}{256^3\cdot\left(\frac{x+y+z}{3}\right)^9}}\)

\(\ge15\sqrt[15]{\frac{1}{256^3\cdot\frac{1}{2^9}}}=\frac{15}{2}\)

Dấu "=" xảy ra tại \(x=y=z=\frac{1}{2}\)

Khách vãng lai đã xóa
zZz Cool Kid_new zZz
18 tháng 2 2020 lúc 20:10

Không phải ngược đâu nha mọi người,dấu bằng không xảy ra nhé!

Khách vãng lai đã xóa
nguyen kim chi
Xem chi tiết
Phan Nghĩa
6 tháng 8 2020 lúc 16:43

Bài này thì AM-GM thôi 

\(P=\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(zx+1\right)^2}{x^2\left(xy+1\right)}\)

Sử dụng BĐT AM-GM cho 3 số không âm ta có :

\(\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)^2}+\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(zx+1\right)}{x^2\left(xy+1\right)}\ge3\sqrt[3]{\frac{xyz\left(xy+1\right)^2\left(yz+1\right)^2\left(zx+1\right)^2}{x^2y^2z^2\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}}\)

\(=3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}}=3\sqrt[3]{\left(\frac{xy+1}{x}\right)\left(\frac{yz+1}{y}\right)\left(\frac{zx+1}{z}\right)}\)

\(=3\sqrt[3]{\left(\frac{xy}{x}+\frac{1}{x}\right)\left(\frac{yz}{y}+\frac{1}{y}\right)\left(\frac{zx}{z}+\frac{1}{z}\right)}=3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\)

Tiếp tục sử dụng AM-GM cho 2 số không âm ta được :

\(3\sqrt[3]{\left(2\sqrt[2]{y\frac{1}{x}}\right)\left(2\sqrt[2]{z\frac{1}{y}}\right)\left(2\sqrt[2]{x\frac{1}{z}}\right)}\ge3\sqrt[3]{\left(2\sqrt{\frac{y}{x}}\right)\left(2\sqrt{\frac{z}{y}}\right)\left(2\sqrt{\frac{x}{z}}\right)}\)

\(=3\sqrt[3]{8\left(\sqrt{\frac{y}{x}}.\sqrt{\frac{z}{y}}.\sqrt{\frac{x}{z}}\right)}=3\sqrt[3]{8.\sqrt{\frac{xyz}{xyz}}}=3\sqrt[3]{8}=3.2=6\)

Đẳng thức xảy ra khi và chỉ khi \(x=y=z=\frac{1}{2}\)

Vậy \(Min_P=6\)đạt được khi \(x=y=z=\frac{1}{2}\)

Khách vãng lai đã xóa
Nhok_baobinh
Xem chi tiết
Tran Le Khanh Linh
26 tháng 4 2020 lúc 8:50

Ta có \(P=\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(zx+1\right)^2}{x^2\left(xy+1\right)}+\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}\)

\(=\frac{\frac{\left(yz+1\right)^2}{z^2}}{\frac{zx+1}{x}}+\frac{\frac{\left(zx+1\right)^2}{x^2}}{\frac{xy+1}{y}}+\frac{\frac{\left(xy+1\right)^2}{y^2}}{\frac{yz+1}{z}}\)

\(=\frac{\left(y+\frac{1}{z}\right)^2}{z+\frac{1}{x}}+\frac{\left(z+\frac{1}{x}\right)^2}{x+\frac{1}{y}}+\frac{\left(x+\frac{1}{y}\right)^2}{y+\frac{1}{z}}\)

Áp dụng BĐT \(\frac{a_1^2}{b_1}+\frac{a_2^2}{b_2}+\frac{a_3^2}{b_3}\ge\frac{\left(a_1+a_2+a_3\right)^2}{b_1+b_2+b_3}\)

Dấu "=" xảy ra khi \(\frac{a_1}{b_1}=\frac{a_2}{b_2}=\frac{a_3}{c_3}\)

\(P=\frac{\left(y+\frac{1}{z}\right)^2}{z+\frac{1}{x}}+\frac{\left(z+\frac{1}{x}\right)^2}{x+\frac{1}{y}}+\frac{\left(x+\frac{1}{y}\right)^2}{y+\frac{1}{z}}\ge\frac{\left(x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}{\left(x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)}\)

\(P\ge a+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

Áp dụng BĐT: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)

=> \(P\ge x+y+z+\frac{9}{x+y+z}=\left[x+y+z+\frac{9}{4\left(x+y+z\right)}\right]+\frac{27}{4\left(x+y+z\right)}\)

Ta có: \(x+y+z+\frac{9}{4\left(x+y+z\right)}\ge2\sqrt{\frac{9}{4}}=3;\frac{27}{4\left(x+y+z\right)}=\frac{27}{4\cdot\frac{3}{2}}=\frac{9}{2}\)

=> \(P\ge3+\frac{9}{2}=\frac{15}{2}\).

Dấu "=" xảy ra <=> x=y=z=\(\frac{1}{2}\)

Vậy MinP=\(\frac{15}{2}\)đạt được khi x=y=z=\(\frac{1}{2}\)

Khách vãng lai đã xóa
Kiệt Nguyễn
26 tháng 4 2020 lúc 8:50

Ta có:

\(P=\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(zx+1\right)^2}{x^2\left(xy+1\right)}+\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}\)

\(=\frac{\left(\frac{yz+1}{z}\right)^2}{\left(\frac{zx+1}{x}\right)}+\frac{\left(\frac{zx+1}{x}\right)^2}{\left(\frac{xy+1}{y}\right)}+\frac{\left(\frac{xy+1}{y}\right)^2}{\left(\frac{yz+1}{z}\right)}\)

\(=\frac{\left(y+\frac{1}{z}\right)^2}{z+\frac{1}{x}}+\frac{\left(z+\frac{1}{x}\right)^2}{x+\frac{1}{y}}+\frac{\left(x+\frac{1}{y}\right)^2}{y+\frac{1}{z}}\)

Áp dụng BĐT Bunhiacopxki dạng phân thức, ta có:

\(\frac{\left(y+\frac{1}{z}\right)^2}{z+\frac{1}{x}}+\frac{\left(z+\frac{1}{x}\right)^2}{x+\frac{1}{y}}+\frac{\left(x+\frac{1}{y}\right)^2}{y+\frac{1}{z}}\)\(\ge\frac{\left(x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}{x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}=x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

\(\ge\left(x+y+z\right)+\frac{9}{x+y+z}=\left(x+y+z\right)+\frac{9}{4\left(x+y+z\right)}\)

\(+\frac{27}{4\left(x+y+z\right)}\ge2\sqrt{\left(x+y+z\right).\frac{9}{4\left(x+y+z\right)}}+\frac{27}{4.\frac{3}{2}}=\frac{15}{2}\)(Áp dụng BĐT Cô - si cho 2 số không âm)

Đẳng thức xảy ra khi \(x=y=z=\frac{1}{2}\)

Khách vãng lai đã xóa
zZz Cool Kid_new zZz
26 tháng 4 2020 lúc 14:46

Một cách giải khác ( cách này em làm rùi giờ làm lại ạ ) cô Chi check em ạ :)

Áp dụng BĐT AM-GM ta có:

\(P=\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(zx+1\right)^2}{x^2\left(xy+1\right)}+\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}\)

\(\ge3\sqrt[3]{\frac{xyz\left(xy+1\right)^2\left(yz+1\right)^2\left(zx+1\right)^2}{x^2y^2z^2\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}}\)

\(=3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}}\)

\(=3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\)

Áp dụng tiếp BĐT AM-GM ta có:

\(y+\frac{1}{x}=y+\frac{1}{4x}+\frac{1}{4x}+\frac{1}{4x}+\frac{1}{4x}\ge5\sqrt[5]{\frac{y}{256x^4}}\)

Tương tự \(z+\frac{1}{y}\ge5\sqrt[5]{\frac{z}{256y^4}};x+\frac{1}{z}\ge5\sqrt[5]{\frac{x}{256z^4}}\)

Sử dụng liên hoàn BĐT AM-GM ta có tiếp

\(P\ge3\sqrt[3]{5\sqrt[5]{\frac{y}{256x^4}}\cdot5\sqrt[5]{\frac{z}{256y^4}}\cdot5\sqrt[5]{\frac{x}{256z^4}}}\)

\(=3\sqrt[3]{125\sqrt[5]{\frac{xyz}{256^3\left(xyz\right)^4}}}\)

\(=15\sqrt[3]{\sqrt[5]{\frac{1}{256^3\left(xyz\right)^3}}}\)

\(=15\sqrt[15]{\frac{1}{256^3\left(xyz\right)^3}}\)

\(\ge15\sqrt[15]{\frac{1}{256^3\left(\frac{x+y+z}{3}\right)^9}}\)

\(\ge15\sqrt[15]{256^3\cdot\frac{1}{2^9}}=\frac{15}{2}\)

Dấu "='" xảy ra tại x=y=z=1/2

Khách vãng lai đã xóa
kim chi nguyen
Xem chi tiết
Cris devil gamer
Xem chi tiết
nguyen kim chi
Xem chi tiết
Phan Nghĩa
22 tháng 8 2020 lúc 10:28

thiếu điều kiện là \(x+y+z\le\frac{3}{2}\)bạn nhớ bổ sung 

Sử dụng bất đẳng thức AM-GM cho 3 số ,ta có :

\(\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}\ge3\sqrt[3]{\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}.\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}.\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}}\)

\(=3\sqrt[3]{\frac{z\left(xy+1\right)^2.x\left(yz+1\right)^2.y\left(xz+1\right)^2}{y^2\left(yz+1\right).z^2\left(zx+1\right).x^2\left(xy+1\right)}}=3\sqrt[3]{\frac{xyz\left(xy+1\right)^2\left(yz+1\right)^2\left(zx+1\right)^2}{x^2y^2z^2\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}}\)

\(=3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}}=3\sqrt[3]{\left(\frac{xy+1}{x}\right)\left(\frac{yz+1}{y}\right)\left(\frac{zx+1}{z}\right)}\)

Tiếp tục sử dụng bất đẳng thức AM-GM cho 2 số ,ta được :

\(3\sqrt[3]{\left(\frac{xy+1}{x}\right)\left(\frac{yz+1}{y}\right)\left(\frac{zx+1}{z}\right)}=3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\)

\(\ge3\sqrt[3]{\left(2\sqrt{y.\frac{1}{x}}\right)\left(2\sqrt{z.\frac{1}{y}}\right)\left(2\sqrt{x.\frac{1}{z}}\right)}=3\sqrt[3]{\left(2\sqrt{\frac{y}{x}}\right).\left(2\sqrt{\frac{z}{y}}\right).\left(2\sqrt{\frac{x}{z}}\right)}\)

\(=3\sqrt[3]{2.2.2.\sqrt{\frac{y}{x}}.\sqrt{\frac{z}{y}}.\sqrt{\frac{x}{z}}}=3\sqrt[3]{8.\sqrt{\frac{xyz}{xyz}}}=3\sqrt[3]{8}=3.2=6\)

Dấu "=" xảy ra khi và chỉ khi \(x=y=z=\frac{1}{2}\)

Vậy \(P_{min}=6\)đạt được khi \(x=y=z=\frac{1}{2}\)

Khách vãng lai đã xóa