Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
FREESHIP Asistant
Xem chi tiết
Thái Hưng Mai Thanh
8 tháng 3 2022 lúc 20:38

Tham khảo:

Ngô Thành Chung
21 tháng 1 2021 lúc 20:03

Đặt AB = c; BC = a; AC = b

sinA = sinB . cosC + sinB . cosB

⇔ 2R. sinA = 2R. sinB . cosC + 2R. sinC . cosB

⇔ a = b. cosC + c. cosB

⇔ a2 = ab . cosC + ac . cosB

⇔ a2 = \(\dfrac{a^2+b^2-c^2}{2}+\dfrac{a^2+c^2-b^2}{2}\)

⇔ a2 = a2 (cái này là hiển nhiên rồi!!)

Vậy khi điều cần chứng minh là một mệnh đề tương đương với một mệnh đề đúng thì nó là mệnh đề đúng

Cách làm : Viết ngược từ dưới lên bạn nhá :))

nguyen ngoc son
Xem chi tiết
Lê Anh Ngọc
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 8 2019 lúc 11:11

a) Áp dụng hệ quả của định lí côsin trong tam giác ta có:

Giải bài 5 trang 99 SGK hình học 10 | Giải toán lớp 10

b) Theo định lí tổng ba góc của tam giác ta có:

A + B + C = 180º

⇒ sin A = sin [180º – (B – C)]= sin (B + C) = sinB.cos C + cosB. sinC (đpcm)

c) Theo định lí sin trong tam giác ABC, ta có:

Giải bài 5 trang 99 SGK hình học 10 | Giải toán lớp 10

Ngô Gia Ân
Xem chi tiết
Nguyễn Minh Hằng
13 tháng 4 2016 lúc 10:36

Trong một tam giác thì tổng các góc là 1800  :

 +  +  = 1800                 =>   = -1800 – ( +  )

 và  ( + ) là 2 góc bù nhau, do đó:

a) sinA = sin[1800 – ( + )] = sin (B + C)

b) cosA = cos[1800 – ( + )] = -cos (B + C)

Nguyễn Minh Quân
Xem chi tiết
HaNa
28 tháng 9 2023 lúc 16:22

Theo đl sin có:

\(\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}\Rightarrow b=a\dfrac{sinB}{sinA};c=\dfrac{sinC}{sinA}.a\)

Mà `b+c=2a`

\(\Rightarrow a\dfrac{sinB}{sinA}+a\dfrac{sinC}{sinA}=2a\\ \Rightarrow\dfrac{sinB}{sinA}+\dfrac{sinC}{sinA}=2\\ \Leftrightarrow sinB+sinC=2sinA\)

Chọn B

quynh ngan
Xem chi tiết
Hoàng Lê Bảo Ngọc
13 tháng 7 2016 lúc 11:03

A B C H K

Từ A kẻ đường cao AH (H thuộc BC) , Từ B kẻ đường cao BK (K thuộc AC)

Ta có : \(sinA=\frac{BK}{AB}\) ; \(sinB=\frac{AH}{AB}\) ; \(sinC=\frac{AH}{AC}\)

\(\Rightarrow\frac{AB}{sinC}=\frac{AB}{\frac{AH}{AC}}=\frac{AB.AC}{AH}\) ; \(\frac{AC}{sinB}=\frac{AC}{\frac{AH}{AB}}=\frac{AB.AC}{AH}\)

\(\Rightarrow\frac{c}{sinC}=\frac{b}{sinB}\) (1)

Lại có : \(BK=sinC.BC\Rightarrow\frac{BC}{sinA}=\frac{BC}{\frac{BK}{AB}}=\frac{BC.AB}{BK}=\frac{AB.BC}{sinC.BC}=\frac{AB}{sinC}\)

\(\Rightarrow\frac{a}{sinA}=\frac{c}{sinC}\) (2)

Từ (1) và (2) ta có : \(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\) (Đpcm)

Trần Nam Long
Xem chi tiết