Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
phamthiminhanh
Xem chi tiết
Hồ Trung Hợp
Xem chi tiết
Nhật Linh Đặng
Xem chi tiết
Trần Thị Thùy Linh 2004
Xem chi tiết
An Mai
26 tháng 7 2018 lúc 7:49

\(\frac{-20+32\sqrt{7}}{9}\)

Trần Thị Thùy Linh 2004
26 tháng 7 2018 lúc 8:43

các bn trình bày bài giải cho mk nha :D

CandyK
Xem chi tiết
ILoveMath
22 tháng 10 2021 lúc 11:01

\(C=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)

\(C=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+2\sqrt{12}}}}}\)

\(C=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\left(2+\sqrt{3}\right)}}}\)

\(C=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}}\)

\(C=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{28-2\sqrt{75}}}}\)

\(C=\sqrt{4+\sqrt{5\sqrt{3}+5\left(5-\sqrt{3}\right)}}\)

\(C=\sqrt{4+5}\)

\(C=3\)

Như
Xem chi tiết
Trương Minh Trọng
16 tháng 6 2017 lúc 18:42

\(\frac{1}{\sqrt{8}+\sqrt{7}}+\sqrt{175}-\frac{6\sqrt{2}-4}{3-\sqrt{2}}\)\(=\frac{\left(\sqrt{8}-\sqrt{7}\right)}{\left(\sqrt{8}+\sqrt{7}\right)\left(\sqrt{8}-\sqrt{7}\right)}+\sqrt{25.7}-\frac{2\sqrt{2}\left(3-\sqrt{2}\right)}{3-\sqrt{2}}\)

\(=\sqrt{8}-\sqrt{7}+5\sqrt{7}-2\sqrt{2}=2\sqrt{2}+4\sqrt{7}-2\sqrt{2}=4\sqrt{7}\)

** \(\frac{\sqrt{6-\sqrt{11}}}{\sqrt{22}-\sqrt{2}}+\frac{6}{\sqrt{2}}-\frac{3}{\sqrt{2}+1}\)\(=\frac{\sqrt{2}\sqrt{6-\sqrt{11}}}{\sqrt{2}\left(\sqrt{22}-\sqrt{2}\right)}+\frac{6\sqrt{2}}{2}-\frac{3\left(\sqrt{2}-1\right)}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}\)

\(=\frac{\sqrt{12-2\sqrt{11}}}{2\sqrt{11}-2}+3\sqrt{2}-\frac{3\sqrt{2}-3}{1}\)\(=\frac{\sqrt{\left(\sqrt{11}\right)^2-2.\sqrt{11}+1^2}}{2\left(\sqrt{11}-1\right)}+3\sqrt{2}-3\sqrt{2}+3\)

\(=\frac{\sqrt{11}-1}{2\left(\sqrt{11}-1\right)}+3=\frac{1}{2}+3=\frac{7}{2}\).

Như
16 tháng 6 2017 lúc 20:45

Cảm ơn bạn :)

Như
Xem chi tiết
Trần Nguyên Linh
Xem chi tiết
Minh Triều
13 tháng 8 2015 lúc 9:51

1)

\(M=\frac{6+4\sqrt{2}}{\sqrt{2}+\sqrt{6+4\sqrt{2}}}+\frac{6-4\sqrt{2}}{\sqrt{2}-\sqrt{6-4\sqrt{2}}}\)

\(=\frac{6+4\sqrt{2}}{\sqrt{2}+\sqrt{4+2.2.\sqrt{2}+2}}+\frac{6-4\sqrt{2}}{\sqrt{2}-\sqrt{4-2.2.\sqrt{2}+2}}\)

\(=\frac{6+4\sqrt{2}}{\sqrt{2}+\sqrt{\left(2+\sqrt{2}\right)^2}}+\frac{6-4\sqrt{2}}{\sqrt{2}-\sqrt{\left(2-\sqrt{2}\right)^2}}\)

\(=\frac{6+4\sqrt{2}}{2+2\sqrt{2}}+\frac{6-4\sqrt{2}}{-2+2\sqrt{2}}\)

\(=\frac{2.\left(3+2\sqrt{2}\right)}{2.\left(1+\sqrt{2}\right)}+\frac{2.\left(3-2\sqrt{2}\right)}{2.\left(\sqrt{2}-1\right)}\)

\(=\frac{3+2\sqrt{2}}{\sqrt{2}+1}+\frac{3-2\sqrt{2}}{\sqrt{2}-1}\)

\(=\frac{\left(3+2\sqrt{2}\right)\left(\sqrt{2}-1\right)}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}+\frac{\left(3-2\sqrt{2}\right)\left(\sqrt{2}+1\right)}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}\)

\(=1+\sqrt{2}+\sqrt{2}-1=2\sqrt{2}\)

Thăng Vũ
Xem chi tiết
lý canh hy
10 tháng 9 2018 lúc 20:55

đặt \(\sqrt[3]{2}\)=a \(\Rightarrow\)a3=2, ta có:

x=\(\frac{1}{a+a^2+a^3}\)=\(\frac{a-1}{a\cdot\left(a^3-1\right)}\)=\(\frac{a-1}{a}\)

y=\(\frac{6}{a^4-a^3+a^2}\)=\(\frac{6\cdot\left(a+1\right)}{a^2\left(a^3+1\right)}\)=\(\frac{2\left(a+1\right)}{a^2}\)=\(\sqrt[3]{2}\cdot\left(a+1\right)\)

THeo cách đặt thì tính được x,y. Sau đó thay vào B thì tính được bạn nhé

Nguyễn Nhã Thanh
Xem chi tiết
 ๖ۣۜFunny-Ngốkツ
11 tháng 6 2018 lúc 21:00

\(\frac{\sqrt{7}-5}{2}-\frac{6-2\sqrt{7}}{4}+\frac{6}{\sqrt{7}-2}-\frac{5}{4+\sqrt{7}}\)

\(=\frac{\sqrt{7}-5}{2}-\frac{6+2\sqrt{7}}{4}+\frac{6\left(\sqrt{7}+2\right)}{\left(\sqrt{7}\right)^2-2^2}-\frac{5\left(4-\sqrt{7}\right)}{4^2-\left(\sqrt{7}\right)^2}\)

\(=\frac{\sqrt{7}-5}{2}-\frac{6+2\sqrt{7}}{4}+\frac{6\sqrt{7}+12}{3}-\frac{20-5\sqrt{7}}{8}\)

\(=\frac{12\left(\sqrt{7}-5\right)}{24}-\frac{6\left(6+2\sqrt{7}\right)}{24}+\frac{8\left(6\sqrt{7}+12\right)}{24}-\frac{3\left(20-5\sqrt{7}\right)}{24}\)

\(=\frac{12\sqrt{7}-60-36-12\sqrt{7}+48\sqrt{7}+96-60+15\sqrt{7}}{24}\)

\(=\frac{-60+63\sqrt{7}}{24}\)