Tìm hai số tự nhiên mà tổng của chúng bằng 168 và ước chung lớn nhất của chúng bằng 24.
Tìm hai số tự nhiên mà tổng của chúng bằng 168 và ước chung lớn nhất của chúng bằng 24
Tìm hai số tự nhiên mà tổng của chúng bằng 168 và ước chung lớn nhất của chúng bằng 24
Bài 1:Tìm hai số tự nhiên.Biết rằng tổng của chúng bằng 66,ước chung lớn nhất của chúng bằng 6,đồng thời có một số chia hết cho 5.
Bài 2:Tìm hai số tự nhiên ,biết hiệu của chúng bằng 84 và ước chung lớn nhất của chúng bằng 12.
Bài 3:Tìm hai số tự nhiên,biết tích của chúng bằng 864 và ước chung lớn nhất của chúng bằng 6.
Tìm hai số tự nhiên biết tổng của chúng bằng 221 và ước chung lớn nhất của chúng bằng 13
\(\left\{{}\begin{matrix}a+b=221\\UCLN\left(a;b\right)=13\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=13m\\b=13n\\\left(m;n\right)=1\end{matrix}\right.\)
\(\Rightarrow13m+13n=221\)
\(\Rightarrow13\left(m+n\right)=221\)
\(\Rightarrow m+n=17\)
- Với \(\left\{{}\begin{matrix}m=16\\n=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=208\\b=13\end{matrix}\right.\)
- Với \(\left\{{}\begin{matrix}m=14\\n=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=182\\b=39\end{matrix}\right.\)
- Với \(\left\{{}\begin{matrix}m=12\\n=5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=156\\b=65\end{matrix}\right.\)
- Với \(\left\{{}\begin{matrix}m=10\\n=7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=130\\b=91\end{matrix}\right.\)
- Với \(\left\{{}\begin{matrix}m=6\\n=11\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=78\\b=143\end{matrix}\right.\)
\(\Rightarrow\left(a;b\right)\in\left\{\left(108;13\right);\left(182;39\right);\left(156:65\right);\left(130;91\right);\left(78;143\right)\right\}\)
Tìm hai số tự nhiên biết rằng tổng của chúng bằng 144 và ước chung lớn nhất của chúng bằng 18.
Gọi hai số tự nhiên thỏa mãn đề bài là a và b thì theo bài ra ta có:
ƯCLN(a,b) =18 ⇒ \(\left\{{}\begin{matrix}a=18m\\b=18n\end{matrix}\right.\) (m.n) = 1 ; m,n \(\in\) N*
18m + 18n = 144 ⇒ m + n = 144: 18 = 8
Vì (m, n) = 1 ⇒ (m, n) = ( 1; 7); ( 3; 5)
th1: (m,n) = (1.7) ⇒ a = 18; b = 18 \(\times\) 7 = 126
th2: (m,n) = (3,5) ⇒ a = 18 \(\times\) 3 = 54; b = 18 \(\times\) 5 = 90
Kết luận hai cặp số tự nhiên thỏa mãn đề bài là:
18 và 126; 54 và 90
Tìm hai số tự nhiên biết rằng tổng của chúng bằng 144 và ước chung lớn nhất của chúng bằng 12.
Tìm hai số tự nhiên biết rằng tổng của chúng bằng 144 và ước chung lớn nhất của chúng bằng 12.
Lời giải:
Gọi 2 số cần tìm là $a,b$. Vì $ƯCLN(a,b)=12$ nên đặt $a=12x, b=12y$ với $x,y$ là stn, $(x,y)=1$.
Ta có:
$a+b=144$
$\Rightarrow 12x+12y=144$
$\Rightarrow x+y=144:12=12$
Mà $(x,y)=1$ nên $(x,y)$ có thể nhận giá trị: $(x,y)=(1,11), (5,7), (7,5), (11,1)$
$\Rightarrow (a,b)=(12, 132), (60, 84), (84,60), (132,12)$
Tìm hai số tự nhiên a và b biết tổng của chúng bằng 128 và ước chung lớn nhất của chúng bằng 16
giả sử a nhỏ hơn hoặc b
theo bài ra : a+b=128 ;(a,b)=16
(a,b)=16=>a=16m ;b=16n (m,nthuộc N ; m nhỏ hơn hoặc bằng n ; (m,n)=1)
=>a.b =16m+16n =>128=16(m+n)=> 8=m+n
lập bẳng giá trị :
m 1 3
n 7 5
a 16 48
b 112 80
a+b 128 128
vậy 2 số a,b cần tìm là :(16;112);(112;16);(48;80);(80;48)
Vì UCLN ( a,b ) = 16 nên a = 16a1 , b = 16b1
(a1 , b1) = 1 , a1,b1 € N*
Mà a + b = 128
=> thay a = 16a1 , b = 16b1 , ta có :
16a1 + 16b1 = 128
16 ( a1 + b1 ) = 128
a1 + b1 = 128 : 16
a1 + b1 = 8
Sau đó bn vẽ bảng thử chọn a,b ( tự lm nhé ) nhớ căn cứ ( a1 , b1 ) = 1 để tự chọn
Lưu ý : € : thuộc
Tìm hai số tự nhiên biết tổng của chúng bằng 192 và ước chung lớn nhất của chúng bằng 20. giải hộ mình nhé
Gọi 2 số cần tìm là a và b ta có:
UCLN(a,b) = 20
< = > a chia hết cho 20 ; b chia hết cho 20
< = > a + b chia hết cho 20
Mà 192 không chia hết cho 20
Nên không tồn tại 2 số cần tìm
Gọi 2 số tự nhiên đó là a và b.
Gọi a = 20.k ; b = 20.l thì (k;l) = 1. k ; l thuộc N*
Ta có a + b = 20.k + 20.l = 192
==> 20. (k + l) = 192
==> k + l = 192 : 20
==> k + l = 9,6
Vì k ; l thuộc N* ==> k + l thuộc N* mà 9,6 không thuộc N* nên không tồn tại hai số tự nhiên cần tìm theo đề bài.
Chứng minh rằng ước chung lớn nhất của hai số tự nhiên khác 0 bằng ước chung lớn nhất của tổng của chúng và bội chung nhỏ nhất của chúng.
vì ước chung lớn nhất luôn là số nhỏ hơn hoặc bằng 1 trong 2 số đó
=> ước chung lớn nhất của tổng của chúng và bội chung nhỏ nhất của chúng