Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Lugia
Xem chi tiết
Dương Bảo Vinh
Xem chi tiết
nguyen quynh trang
3 tháng 9 2016 lúc 17:15

lên google tra là bài tập về số hữu tỉ lớp 7 là ra

Nguyễn Tuấn Anh
Xem chi tiết
Tran Nguyen
Xem chi tiết
Nguyễn Anh Quân
13 tháng 1 2018 lúc 19:58

Bài 13 :

Có : c = (a-b).[-(a-b)] = -(a-b)^2

Vì a khác b => a-b khác 0 => (a-b)^2 > 0

=> c = -(a-b)^2 < 0

=> c là số âm

Tk mk nha

Tran Nguyen
13 tháng 1 2018 lúc 20:00

làm dùm mình bài 14 luôn nha bạn

Nguyễn Nhã Thanh
13 tháng 1 2018 lúc 20:04

bài 13

c là số âm

bài 14

a,a.b=-6

a/b=1,b/a=6

a/b=2,b/a=3

còn cả p/s nữa

Xem chi tiết
phạm thị hải anh
29 tháng 2 2020 lúc 20:48

sorry,em mới có học lớp 5

HÌ HÌ

Khách vãng lai đã xóa
Ngoc Han ♪
29 tháng 2 2020 lúc 20:52

Bài 1 : 

b ) Vì A là tổng các số nguyên âm lẻ có hai chữ số .

\(\Rightarrow\)A = - 11 + ( - 13 ) + ( - 15 ) + ... + ( - 99 )

Vì b tổng các số nguyên dương chẵn có hai chữ số .

\(\Rightarrow\) B = 10 + 12 + 14 + ... + 98

Vậy tổng A + b là :

\(\Rightarrow\) A + b = [ - 11 + ( - 13 ) + ( - 15 ) + ... + ( - 99 ) ] + ( 10 + 12 + 14 + ... + 98 )

\(\Rightarrow\) A + b = ( 10 - 11 ) + ( 12 − 13 ) + ( 14 - 15 ) + ... + ( 98 - 99 )

\(\Rightarrow\) A + b = - 1 + ( - 1 ) + ( - 1 ) + . . + ( - 1 ) ( 50 số hạng )

\(\Rightarrow\) A + b = ( - 1 ) × 50

\(\Rightarrow\)A + b = - 50

Khách vãng lai đã xóa
Ngoc Han ♪
29 tháng 2 2020 lúc 21:05

Bài 2 : ( Cách 1 )

Vì p là số nguyên tố lớn hơn 3 .

\(\Rightarrow\) p không chia hết cho 3

\(\Rightarrow\) p chia 3 dư 1 hoặc dư 2 .

\(\Rightarrow\orbr{\begin{cases}p+1\\p-1\end{cases}⋮3}\)

\(\Rightarrow\) ( p - 1 ) ( p + 1 ) \(⋮\)3

Vì p là số nguyên tố lớn hơn 3 .

\(\Rightarrow\) p là số lẻ

\(\Rightarrow\) p - 1 và p + 1 là 2 số chẵn liên tiếp .

\(\Rightarrow\)( p + 1 ) ( p - 1) \(⋮\) 8

\(\Rightarrow\)( p + 1 ) ( p - 1) \(⋮\)24 ( đpcm )

Cách 2 :

Vì p là số nguyên tố lớn hơn 3 nên suy ra , p là số lẻ .

\(\Rightarrow\) Hai số p – 1 , p + 1 là hai số chẵn liên tiếp .

\(\Rightarrow\) ( p - 1) . ( p + 1 ) \(⋮\)8  (1)

Vì p là số nguyên tố lớn hơn 3 nên suy ra p = 3k + 1 hoặc p = 3k + 2 ( k thuộc N* ) .

+) Với p = 3k + 1 :

\(\Rightarrow\) ( p - 1 ) ( p + 1 ) = 3k . ( 3k + 2 ) \(⋮\)3 ( 2a )

+) Với p = 3k + 2 :

\(\Rightarrow\) ( p - 1 ) ( p + 1 ) = ( 3k - 1) . 3 . ( k + 1) \(⋮\)3 ( 2b )

Từ ( 2a  ), ( 2b ) suy ra : ( p - 1 ) ( p + 1 ) \(⋮\)3      (2)

Vì ( 8 , 3) = 1 , từ (1) và (2) suy ra : ( p - 1 ) ( p + 1 ) \(⋮\)24 ( đpcm )

Bạn tham khảo 2 cách làm của mình nha !!

Khách vãng lai đã xóa
Nguyễn Hà Phương
Xem chi tiết
Hoàng Lê Bảo Ngọc
18 tháng 8 2016 lúc 13:16

2a-ab+b=5 <=> a(2-b) - (2-b) = 3 <=> (a-1)(2-b) = 3

Tới đây phân tích 3 = 1 x 3 = -1 x (-3) = ...

Ghép cặp với a - 1 và 2 - b là ra :)

Nguyễn Hà Phương
Xem chi tiết
Hoàng Việt Hà
Xem chi tiết
Nguyễn Đình Hiếu
13 tháng 1 2016 lúc 18:18

8 : 5 dư 3 => a = 3

số liền sau của 3 là 4 => b = 4

số không phải số nguyên âm không phải số nguyên dương là số 0 => c = 0

vậy số cần tìm là -340

Jungkookie
Xem chi tiết
Team Free Fire 💔 Tớ Đan...
5 tháng 12 2019 lúc 22:22

3a+4b-3c=4Tìm GTNN của biểu thức : A = 2a+3b-4c? ... Cho a;b;c là các số không âm thỏa mãn:2a+b=6-3c;3a+4b=3c+4.Tìm min ... T = a −2 b 2 a − b +2 a −3 b 2 a + b. Đọc tiếp. ..... cho a và b là hai số thực thỏa mãn 4a + b = 5ab và 2a>b>0.

Khách vãng lai đã xóa
Bách Bách
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 4 2022 lúc 18:09

Đặt \(\left\{{}\begin{matrix}a-2=x\ge0\\b=y\ge0\end{matrix}\right.\) \(\Rightarrow2y+4=\left(x+2\right)y\Rightarrow xy=4\)

\(P=\dfrac{\sqrt{x^2+2x}}{x+1}+\dfrac{\sqrt{y^2+2y}}{y+1}+\dfrac{1}{x+y+2}\)

\(P=\dfrac{\sqrt{2x\left(x+2\right)}}{\sqrt{2}\left(x+1\right)}+\dfrac{\sqrt{2y\left(y+2\right)}}{\sqrt{2}\left(y+1\right)}+\dfrac{1}{x+1+y+1}\)

\(P\le\dfrac{1}{2\sqrt{2}}\left(\dfrac{3x+2}{x+1}+\dfrac{3y+2}{y+1}\right)+\dfrac{1}{4}\left(\dfrac{1}{x+1}+\dfrac{1}{y+1}\right)\)

\(P\le\dfrac{1}{2\sqrt{2}}\left(3-\dfrac{1}{x+1}+3-\dfrac{1}{y+1}\right)+\dfrac{1}{4}\left(\dfrac{1}{x+1}+\dfrac{1}{y+1}\right)\)

\(P\le\dfrac{3\sqrt{2}}{2}-\dfrac{\sqrt{2}-1}{4}\left(\dfrac{1}{x+1}+\dfrac{1}{y+1}\right)\)

Ta có:

\(\dfrac{1}{x+1}+\dfrac{1}{y+1}=\dfrac{x+y+2}{xy+x+y+1}=\dfrac{x+y+2}{x+y+5}=1-\dfrac{3}{x+y+5}\ge1-\dfrac{3}{2\sqrt{xy}+5}=\dfrac{2}{3}\)

\(\Rightarrow P\le\dfrac{3\sqrt{3}}{2}-\dfrac{\sqrt{2}-1}{4}.\dfrac{2}{3}=...\)

Dấu "=" xảy ra khi \(x=y=2\) hay \(\left(a;b\right)=\left(4;2\right)\)