Cho a>0 .Chứng minh rằng \(\sqrt{a}+2>\sqrt{a+4}\)
1/ Cho a,b>0 , thỏa mãn ab = 1. Chứng minh rằng:
\(\dfrac{a}{\sqrt{b+2}}+\dfrac{b}{\sqrt{a+2}}+\dfrac{1}{\sqrt{a+b+ab}}\ge\sqrt{3}\)
2/ Cho a>0. Chứng minh rằng:
a+\(\dfrac{1}{a}\ge\sqrt{\dfrac{1}{a^2+1}}+\sqrt{1+\dfrac{1}{a^2+1}}\)
3/ Cho a, b>0. Chứng minh rằng:
2(a+b)\(\le1+\sqrt{1+4\left(a^3+b^3\right)}\)
cho a>0 và \(4a^2+a\sqrt{2}-\sqrt{2}\) =0 chứng minh rằng
\(\dfrac{a+1}{\sqrt{a^4+a+1}-a^2}=\sqrt{2}\)
* Cho a, b, c ≥ 0. Chứng minh rằng a+b+c ≥ \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
* Chứng minh rằng A=\(\sqrt{1+2008^2+\dfrac{2008^2}{2009^2}}+\dfrac{2008}{2009}\)có giá trị là số tự nhiên
Bài 1:
Ta có: \(a+b\ge2\sqrt{ab}\)
\(b+c\ge2\sqrt{bc}\)
\(a+c\ge2\sqrt{ac}\)
Do đó: \(2\left(a+b+c\right)\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\)
hay \(a+b+c\ge\sqrt{ab}+\sqrt{cb}+\sqrt{ac}\)
Cho a,b,c > 0 thỏa mãn \(a\sqrt{\dfrac{b}{c}}+b\sqrt{\dfrac{c}{a}}+c\sqrt{\dfrac{a}{b}}=3\). Chứng minh rằng:
\(N=\dfrac{a^4}{b^2}+\dfrac{b^4}{c^2}+\dfrac{c^4}{a^2}\ge3\)
Áp dụng \(x^2+y^2+z^2\ge xy+yz+zx\) và \(x^2+y^2+z^2\ge\dfrac{1}{3}\left(x+y+z\right)^2\)
\(N\ge\dfrac{a^2b}{c}+\dfrac{b^2c}{a}+\dfrac{c^2a}{b}\ge\dfrac{1}{3}\left(a\sqrt{\dfrac{b}{c}}+b\sqrt{\dfrac{c}{a}}+c\sqrt{\dfrac{a}{b}}\right)^2=3\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)
a)Cho a>b>0 chứng minh rằng \(\frac{1}{a+b}\le\frac{1}{2\sqrt{ab}}\)
b) Chứng minh \(\frac{\sqrt{2}-\sqrt{1}}{3}+\frac{\sqrt{3}-\sqrt{2}}{5}+\frac{\sqrt{4}-\sqrt{3}}{7}+...+\frac{\sqrt{2011}-\sqrt{2010}}{4021}< \frac{1}{2}\)
a/Cho a>0 Chứng minh rằng:\(\sqrt{a}+1\)>\(\sqrt{a+1}\)
b/Cho a>1 Chứng minh rằng \(\sqrt{a-1}\)<\(\sqrt{a}\)
c/Chứng minh rằng \(\sqrt{6}-1>\sqrt{3}-\sqrt{2}\)
a) \(\sqrt{a}+1>\sqrt{a+1}\)\(\Leftrightarrow\)\(a+2\sqrt{a}+1>a+1\)\(\Leftrightarrow\)\(2\sqrt{a}>0\)( luôn đúng \(\forall x>0\) )
b) \(a-1< a\)\(\Leftrightarrow\)\(\sqrt{a-1}< \sqrt{a}\)
c) \(\left(\sqrt{6}-1\right)^2=6-2\sqrt{6}+1>3-2\sqrt{3.2}+2=\left(\sqrt{3}-\sqrt{2}\right)^2\)
do \(\sqrt{6}-1>0;\sqrt{3}-\sqrt{2}>0\) nên \(\sqrt{6}-1>\sqrt{3}-\sqrt{2}\) ( đpcm )
Cho \(a>0\) và \(4a^2+a\sqrt{2}-\sqrt{2}=0\). Chứng minh:
\(\dfrac{a+1}{\sqrt{a^4+a+1}-a^2}=\sqrt{2}\)
\(a^2=\dfrac{\sqrt{2}}{4}\left(1-a\right)\)
\(\Rightarrow a^4=\dfrac{1}{8}\left(1-a\right)^2\)
\(\Rightarrow a^4+a+1=\dfrac{1}{8}\left(1-a\right)^2+a+1=\dfrac{1}{8}\left(a^2+6a+9\right)=\dfrac{1}{8}\left(a+3\right)^2\)
\(\Rightarrow\sqrt{a^4+a+1}-a^2=\sqrt{\dfrac{1}{8}\left(3+a\right)^2}-a^2=\dfrac{\sqrt{2}}{4}\left(a+3\right)-\dfrac{\sqrt{2}}{4}\left(1-a\right)=\dfrac{\sqrt{2}}{2}\left(a+1\right)\)
\(\Rightarrow\dfrac{a+1}{\sqrt{a^4+a+1}-a^2}=\dfrac{a+1}{\dfrac{\sqrt{2}}{2}\left(a+1\right)}=\sqrt{2}\)
Chứng minh rằng nếu a,b>0 ta luôn có: \(\frac{a+2\sqrt{ab}+9b}{\sqrt{a}+3\sqrt{b}-2\sqrt[4]{ab}}-2\sqrt{b}=\left(\sqrt[4]{a}+\sqrt[4]{b}\right)^2\)
Chứng minh rằng ,nếu a,b>0 thi ta có:
\(\frac{a+2\sqrt{ab}+9b}{\sqrt{a}+3\sqrt{b}+2\sqrt[4]{ab}}-2\sqrt{b}=\left(\sqrt[4]{a}+\sqrt[4]{b}\right)^2\)