Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thanh
Xem chi tiết
Vo Thi Minh Dao
Xem chi tiết
Nguyễn Thành Trương
1 tháng 2 2019 lúc 10:24

Chứng minh đẳng thức,Toán học Lớp 9,bà i tập Toán học Lớp 9,giải bà i tập Toán học Lớp 9,Toán học,Lớp 9

Ly Ly
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 9 2021 lúc 21:19

Bài 1: 

Ta có: \(a+b\ge2\sqrt{ab}\)

\(b+c\ge2\sqrt{bc}\)

\(a+c\ge2\sqrt{ac}\)

Do đó: \(2\left(a+b+c\right)\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\)

hay \(a+b+c\ge\sqrt{ab}+\sqrt{cb}+\sqrt{ac}\)

friknob
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 8 2021 lúc 21:49

Áp dụng  \(x^2+y^2+z^2\ge xy+yz+zx\) và \(x^2+y^2+z^2\ge\dfrac{1}{3}\left(x+y+z\right)^2\)

\(N\ge\dfrac{a^2b}{c}+\dfrac{b^2c}{a}+\dfrac{c^2a}{b}\ge\dfrac{1}{3}\left(a\sqrt{\dfrac{b}{c}}+b\sqrt{\dfrac{c}{a}}+c\sqrt{\dfrac{a}{b}}\right)^2=3\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

Trần Mai Ngọc
Xem chi tiết
Võ Thiên Long
Xem chi tiết
Phùng Minh Quân
23 tháng 7 2019 lúc 15:19

a) \(\sqrt{a}+1>\sqrt{a+1}\)\(\Leftrightarrow\)\(a+2\sqrt{a}+1>a+1\)\(\Leftrightarrow\)\(2\sqrt{a}>0\)( luôn đúng \(\forall x>0\) ) 

b) \(a-1< a\)\(\Leftrightarrow\)\(\sqrt{a-1}< \sqrt{a}\)

c) \(\left(\sqrt{6}-1\right)^2=6-2\sqrt{6}+1>3-2\sqrt{3.2}+2=\left(\sqrt{3}-\sqrt{2}\right)^2\)

do \(\sqrt{6}-1>0;\sqrt{3}-\sqrt{2}>0\) nên \(\sqrt{6}-1>\sqrt{3}-\sqrt{2}\) ( đpcm ) 

Lấp La Lấp Lánh
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 10 2021 lúc 19:19

\(a^2=\dfrac{\sqrt{2}}{4}\left(1-a\right)\)

\(\Rightarrow a^4=\dfrac{1}{8}\left(1-a\right)^2\)

\(\Rightarrow a^4+a+1=\dfrac{1}{8}\left(1-a\right)^2+a+1=\dfrac{1}{8}\left(a^2+6a+9\right)=\dfrac{1}{8}\left(a+3\right)^2\)

\(\Rightarrow\sqrt{a^4+a+1}-a^2=\sqrt{\dfrac{1}{8}\left(3+a\right)^2}-a^2=\dfrac{\sqrt{2}}{4}\left(a+3\right)-\dfrac{\sqrt{2}}{4}\left(1-a\right)=\dfrac{\sqrt{2}}{2}\left(a+1\right)\)

\(\Rightarrow\dfrac{a+1}{\sqrt{a^4+a+1}-a^2}=\dfrac{a+1}{\dfrac{\sqrt{2}}{2}\left(a+1\right)}=\sqrt{2}\)

Daco Mafoy
Xem chi tiết
Ngọc Mai
Xem chi tiết