Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cao Tường Vi
Xem chi tiết
lê thị thu huyền
Xem chi tiết
Mất nick đau lòng con qu...
25 tháng 12 2018 lúc 17:59

\(A=\left(x-3\right)\left(7-x\right)=-x^2+10x-21=-\left(x^2-10x+25\right)+4\)

\(A=-\left(x-5\right)^2+4\le4\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(-\left(x-5\right)^2=0\)\(\Leftrightarrow\)\(x=5\)( thỏa mãn \(3\le x\le7\) ) 

... 

Mất nick đau lòng con qu...
25 tháng 12 2018 lúc 18:03

Còn cách này hay hơn nhé :)) dùng Cosi 

Vì \(3\le x\le7\) nên \(A=\left(x-3\right)\left(7-x\right)\ge0\)

\(\Rightarrow\)\(\sqrt{A}=\sqrt{\left(x-3\right)\left(7-x\right)}\le\frac{x-3+7-x}{2}=\frac{4}{2}=2\)\(\Leftrightarrow\)\(A=2^2=4\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x-3=7-x\)\(\Leftrightarrow\)\(x=5\) ( thỏa mãn \(3\le x\le7\) ) 

Ái Nữ
Xem chi tiết
Nguyễn Việt Lâm
10 tháng 5 2021 lúc 14:36

Đề bài sai/thiếu, biểu thức này không thể tồn tại max nếu x; y chỉ là số thực (lấy ví dụ, \(x=y=-1000\), như vậy \(2x+3y< 0\le7\) phù hợp điều kiện, nhưng P lại ra 1 kết quả khổng lồ)

P chỉ tồn tại max khi x; y có thêm điều kiện (ví dụ x; y dương hoặc không âm)

Khi đó: \(2x+3y\le7\Rightarrow3y\le7-2x\Rightarrow y\le\dfrac{7}{3}-\dfrac{2}{3}x\)

Từ đó ta có:

\(P=x+y\left(x+1\right)\le x+\left(\dfrac{7}{3}-\dfrac{2}{3}x\right)\left(x+1\right)\)

\(\Rightarrow P\le-\dfrac{2}{3}x^2+\dfrac{8}{3}x+\dfrac{7}{3}=-\dfrac{2}{3}\left(x-2\right)^2+5\le5\)

\(P_{max}=5\) khi \(\left(x;y\right)=\left(2;1\right)\)

Cố gắng hơn nữa
Xem chi tiết
Riio Riyuko
18 tháng 5 2018 lúc 15:37

\(T=\frac{3+x}{x}+\frac{6-x}{3-x}=\frac{\left(3+x\right)\left(3-x\right)+x\left(6-x\right)}{x\left(3-x\right)}=\frac{9-x^2+6x-x^2}{x\left(3-x\right)}=\frac{9+6x-2x^2}{x\left(3-x\right)}\)

Đặt T = a

<=> \(\frac{9+6x-2x^2}{x\left(3-x\right)}=a\)

<=> \(9+6x-2x^2=3xa-x^2a\)

<=> \(2x^2-6x-9=x^2a-3xa\)

<=> \(x^2\left(2-a\right)-x\left(6-3a\right)-9=0\)

Phương trình trên có nghiệm 

<=> \(\Delta=\left(6-3a\right)^2+4.9.\left(2-a\right)\ge0\)

<=> \(36-36a+9a^2+72-36a\ge0\)

<=> \(9a^2-72a+108\ge0\)

<=> \(\left(a-6\right)\left(a-2\right)\ge0\)

<=> \(\hept{\begin{cases}a\ge6\\a\le2\end{cases}}\)

Vậy \(Min_T=6\) <=> \(x=\frac{3}{2}\)

và \(Max_T=2\Leftrightarrow x\in\varnothing\) (Không tồn tại giá trị lớn nhất của x ) 

Thầy Cao Đô
Xem chi tiết

\(P=\frac{1}{5xy}+\frac{5}{x+2y+5}=\frac{1}{5xy}+\frac{5}{\left(x+y\right)+y+5}\ge\frac{1}{5xy}+\)\(\frac{5}{y+8}\)

\(\Leftrightarrow P\ge\frac{1}{5xy}+\frac{xy}{20}+\frac{5}{y+8}+\frac{y+8}{20}-\frac{xy+y+8}{20}\)

Lại có \(\frac{xy+y+8}{20}=\frac{y\left(x+1\right)+8}{20}\le\frac{\frac{\left(x+y+1\right)^2}{4}}{20}\le\frac{3}{5}\)

khi đó \(p\ge\left(\frac{1}{5xy}+\frac{xy}{20}\right)+\left(\frac{5}{y+8}+\frac{y+8}{20}\right)-\frac{xy+y+8}{20}\)

\(\Leftrightarrow P\ge\frac{1}{5}+1-\frac{3}{5}\)

\(\Leftrightarrow P\ge\frac{3}{5}\)

vậy \(P_{min}=\frac{3}{5}\Rightarrow x=1,y=2\)

Khách vãng lai đã xóa
NGUYỄN MINH HUY
Xem chi tiết
Nguyễn Đức Việt
Xem chi tiết
Akai Haruma
8 tháng 5 2023 lúc 23:44

Lời giải:
Áp dụng BĐT AM-GM ta có:
$x^5+x^5+x^5+1+1\geq 5\sqrt[5]{x^{15}}=5x^3$
$y^5+y^5+y^5+1+1\geq 5\sqrt[5]{y^{15}}=5y^3$

$\Rightarrow 3(x^5+y^5)+4\geq 5(x^3+y^3)\geq 10$ (do $x^3+y^3\geq 2$)

$\Leftrightarrow x^5+y^5\geq 2$
Vậy $C_{\min}=2$. Giá trị này đạt tại $x=y=1$

Nguyễn Minh Huy
Xem chi tiết
Nguyễn Ngọc Thảo Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 1 2022 lúc 15:01

b: \(x^2-x+1=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

c: \(A=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\forall x\)

Dấu '=' xảy ra khi x=3

d: \(B=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left(x-2\right)^2-1\le-1\forall x\)

Dấu '=' xảy ra khi x=2