CHO A,B,C >0 VÀ A + B + C = 1. CHỨNG MINH RẰNG :
(1-A)(1-B)(1-C) ≥ 8ABC
Chứng minh (1-a)(1-b)(1-c)\(\ge\)8abc. Với mọi a,b,c>0 và a+b+c=1
Áp dụng BĐT AM-GM:
\(\left(1-a\right)\left(1-b\right)\left(1-c\right)=\left(b+c\right)\left(c+a\right)\left(a+b\right)\ge2\sqrt{bc}.2\sqrt{ca}.2\sqrt{ab}=8abc\)
Đẳng thức xảy ra khi \(a=b=c=\dfrac{1}{3}\)
chứng minh (1-a)(1-b)(1-c)>=8abc với a,b,c>=0 và a+b+c=1
Áp dụng BĐT AM-GM ta có:
\(VT=\left(1-a\right)\left(1-b\right)\left(1-c\right)\)
\(=\left(a+b\right)\left(b+c\right)\left(a+c\right)\)
\(\ge2\sqrt{ab}\cdot2\sqrt{bc}\cdot2\sqrt{ac}\)
\(=8abc=VP\)
Khi \(a=b=c\)
BĐT\(\Leftrightarrow\)(a+b)+(b+c)+(c+a)\(\ge\)8abc
TA có BDT cô si
a+b\(\ge\)2\(\sqrt{ab}\)
\(\Rightarrow\)(a+b)(b+c)(a+c)\(\ge\)\(2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ac}\)
Vậy (1-a)(1-b)(1-c)\(\ge\)8abc
Cho a,b,c \(\ge\)0 ; a+b+c = 1
Chứng minh (1-a)(1-b)(1-c) \(\ge\)8abc
Mình trình bày hơi tắt 1 chút nhé
Vì \(a+b+c=1\) nên \(\begin{cases}a+b=1-a\\a+c=1-b\\b+c=1-c\end{cases}\)
Ta có:
\(\left(1-a\right)\left(1-b\right)\left(1-c\right)=\left(a+b\right)\left(a+c\right)\left(b+c\right)\ge2\sqrt{ab}.2\sqrt{ac}.2\sqrt{bc}=8abc\)
\(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge8abc\) (đpcm)
sao a+b+c=1 mà a+b=1-a vậy Kiệt? ,a+b=1-c chứ?
1.Cho các số dương a,b. Chứng minh rằng \(\dfrac{1}{a}\)+\(\dfrac{1}{b}\)≥\(\dfrac{4}{a+b}\)
2. Cho a,b,c là các số thực không âm. Chứng minh rằng (a+b)(b+c)(c+a)≥8abc
1) xét hiệu
\(\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{4}{a+b}\ge0\)
<=> \(\dfrac{b\left(a+b\right)}{ab\left(a+b\right)}+\dfrac{a\left(a+b\right)}{ab\left(a+b\right)}-\dfrac{4ab}{ab\left(a+b\right)}\ge0\)
=> b(a+b)+a(a+b)-4ab ≥ 0
<=> ab+b2+a2+ab-4ab ≥ 0
<=> a2 -2ab+b2 ≥ 0
<=> (a-b)2 ≥ 0 (luôn đúng )
=> đpcm
2)Ta có:\(\left(a-b\right)^2\ge0\)
\(\Rightarrow a^2-2ab+b^2\ge0\)
\(\Rightarrow a^2+2ab+b^2-4ab\ge0\)
\(\Rightarrow\left(a+b\right)^2\ge4ab\)
TT\(\Rightarrow\left(b+c\right)^2\ge4bc;\left(c+a\right)^2\ge4ca\)
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\ge64a^2b^2c^2\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
Cho a,b,c,d là các số thực. Chứng minh rằng a^2+b^2>=2ab(1). Áp dụng chứng minh các bất đẳng thức sau
a) (a^2+1)(b^2+1)(c^2+1)>=8abc
b) (a^2+4)(b^2+4)(c^2+4)(d^2+4)>=256abcd
a ) Áp dụng BĐT phụ \(a^2+b^2\ge2ab\) cho các cặp số thực , ta có :
\(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2a.2b.2c=8abc\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)
b ) Làm tương tự như a )
Ta có: \(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow a^2+b^2\ge2ab\)
a) Lại có : \(\left(a-1\right)^2\ge0\Leftrightarrow...\Leftrightarrow a^2+1\ge2a\)
cmtt \(\Rightarrow\left\{{}\begin{matrix}b^2+1\ge2b\\c^2+1\ge2c\end{matrix}\right.\)
Nhân vế theo vế ta đc: \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2a.2b.2c=8abc\left(dpcm\right)\)
b) Tiếp tục có \(\left(a-2\right)^2\ge0\Leftrightarrow...\Leftrightarrow a^2+4\ge4a\)
CMTT: \(\Rightarrow\left\{{}\begin{matrix}b^2+4\ge4b\\c^2+4\ge4c\end{matrix}\right.\)
Nhân vế theo vế ta đc: \(\left(a^2+4\right)\left(b^2+4\right)\left(c^2+4\right)\ge4a.4b.4c=256abc\left(dpcm\right)\)
Cho a,b,c,d là các số thực. Chứng minh rằng a^2+b^2>=2ab(1). Áp dụng chứng minh các bất đẳng thức sau
a) (a^2+1)(b^2+1)(c^2+1)>=8abc
b) (a^2+4)(b^2+4)(c^2+4)(d^2+4)>=256abcd
(a^2+b^2)/2>=ab
<=>(a^2+b^2)>=2ab
<=> a^2+2ab+b^2>=2ab
<=>a^2+b^2>=0(luôn đúng)
=> điều phải chứng minh.
Xét hiệu: \(a^2+b^2-2ab=\left(a-b\right)^2\ge0\)
=> \(a^2+b^2\ge2ab\)
Dấu "=" xra <=> a = b
Áp dụng ta có:
a) \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2a.2b.2c=8abc\)
dấu "=" xra <=> a = b = c = 1
b) \(\left(a^2+4\right)\left(b^2+4\right)\left(c^2+4\right)\left(d^2+4\right)\ge4a.4b.4c.4d=256abcd\)
Dấu "=" xra <=> a = b= c = d = 2
a) Áp dụng bđt AM-GM ta có:
\(\hept{\begin{cases}a^2+1\ge2a\\b^2+1\ge2b\\c^2+1\ge2c\end{cases}}\)
nhân theo 3 vế BDDT ta đc:
( a^2+1) (b^2+1)(c^2+1) >= 2a.2b.2c = 8abc
"=" <=> a=b=c
Cho các số dương a,b,c không âm
Và a+b+c=1
Chứng minh (1-a)(1-b)(1-c) lớn hơn bằng 8abc
Giúp mk nha !
tui làm đc là phải tịk nha!
a+b+c=1\(\Rightarrow\)1-a=b+c;1-b=c+a;1-c=a+b \(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)=\)(a+b)(b+c)(c+a)\(\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}\)=8.abc\(\ge8\).dấu ''=''xảy ra khi một tong 3 số a;b;c là 1 2 số còn lại bằng 0
Không có giá trị a,b,c thỏa mãn khi a.b,c là số dương và tổng bằng 1
Cho a, b , c \(\ge\)0; a+b+c = 1
Chứng minh (1-a)(1-b)(1-c) \(\ge\)8abc
\(BĐT\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
Dễ thấy BĐt trên đúng theo Cô si:
\(a+b\ge2\sqrt{ab}\)
Thiết lập cac BĐT tương tự và nhân lại ta có đpcm.
Cho các số dương a,b,c không âm
Và a+b+c=1
Chứng minh (1-a)(1-b)(1-c)lớn hơn bằng 8abc
Giúp mk với nha!