Tìm giá trị của biểu thức sau
\(A=2x^2-4x+2xy+y^2+2023\)
tìm GTNN của biểu thức sau: A=2x^2+y^2+2xy+2x-2y+2023
Lời giải:
$A=2x^2+y^2+2xy+2x-2y+2023$
$=(x^2+2xy+y^2)+x^2+2x-2y+2023$
$=(x+y)^2-2(x+y)+x^2+4x+2023$
$=(x+y)^2-2(x+y)+1+(x^2+4x+4)+2018$
$=(x+y-1)^2+(x+2)^2+2018\geq 0+0+2018=2018$
Vậy GTNN của $A$ là $2018$. Giá trị này đạt tại $x+y-1=x+2=0$
$\Leftrightarrow x=-2; y=3$
Tìm giá trị nhỏ hoặc lớn nhất của biểu thức A=-2x^2-y^2+2xy+4x-40
A=-x^2+2xy-y^2-x^2+4x-4-36
=-(x-y)^2-(x-2)^2-36<=-36
Dấu = xảy ra khi x=y=2
Tìm giá trị nhỏ nhất của các biểu thức sau
A=\(x^2-4x+1\) \(B=4x^2+4x+11\)
\(C=\left(x-1\right)\left(x+3\right)\left(x+2\right)\left(x+6\right)\)
\(D=2x^2+y^2-2xy+2x-4y+9\)
Tìm giá trị lớn nhất của các biểu thức sau
\(E=5-8x-x^2\)
\(F=4x-x^2+1\)
a, cho x, y là 2 số thoả mãn (2x - y + 7)\(^{2022}\) + |x - 1|\(^{2023}\) ≤ 0. Tính giá trị của biểu thức: P = x\(^{2023}\) + (y - 10)\(^{2023}\)
b, Tìm số tự nhiên x, y biết 25 - y\(^2\) = 8(x = 2023)\(^2\)
c, Tìm giá trị nhỏ nhất của biểu thức: P = (|x - 3| + 2)\(^2\) + |y + 3| + 2019
d, Tìm cặp số nguyên x, y biết: (2 - x)(x + 1) = |y + 1|
a: \(\left(2x-y+7\right)^{2022}>=0\forall x,y\)
\(\left|x-1\right|^{2023}>=0\forall x\)
=>\(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}>=0\forall x,y\)
mà \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}< =0\forall x,y\)
nên \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}=0\)
=>\(\left\{{}\begin{matrix}2x-y+7=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2x+7=9\end{matrix}\right.\)
\(P=x^{2023}+\left(y-10\right)^{2023}\)
\(=1^{2023}+\left(9-10\right)^{2023}\)
=1-1
=0
c: \(\left|x-3\right|>=0\forall x\)
=>\(\left|x-3\right|+2>=2\forall x\)
=>\(\left(\left|x-3\right|+2\right)^2>=4\forall x\)
mà \(\left|y+3\right|>=0\forall y\)
nên \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|>=4\forall x,y\)
=>\(P=\left(\left|x-3\right|+2\right)^2+\left|y-3\right|+2019>=4+2019=2023\forall x,y\)
Dấu '=' xảy ra khi x-3=0 và y-3=0
=>x=3 và y=3
tìm giá trị nhỏ nhất của biểu thức sau
A = 2x2 + 2xy + y2 + 4x - 10
\(A=2x^2+2xy+y^2+4x-10\)
=>\(A=\left(x^2+2xy+y^2\right)+\left(x^2+4x+4\right)-14\)
=>\(A=\left(x+y\right)^2+\left(x+2\right)^2-14\)
Vì \(\hept{\begin{cases}\left(x+y\right)^2\ge0\\\left(x+2\right)^2\ge0\end{cases}\Rightarrow}\left(x+y\right)^2+\left(x+2\right)^2-14\ge-14\)
\(\Rightarrow A_{min}=-14\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2=0\\\left(x+2\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=0\\x+2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-2\\y=2\end{cases}}}\)
Vậy Amin=-14 tại x=-2 và y=2
\(A=\left(x^2+2xy+y^2\right)+\left(x^2+4x+4\right)-14\)
\(A=\left(x+y\right)^2+\left(x+2\right)^2-14\)
\(\Rightarrow A_{min}=-14\Leftrightarrow x=-2,y=2\)
1. Tìm giá trị nhỏ nhất của các biểu thức sau
a, A = x\(^2\)- 6x + 25
b, B = 4x\(^2\) + 4x - 2
c, C = x\(^2\) + x
2. Tìm giá trị lớn nhất của các biểu thức sau
a, A = -x\(^2\)- 10x + 25
b, B = -x\(^2\)- 8x + 1
c, C = -x\(^2\)- 3x
3,Tìm giá trị nhỏ nhất của các biểu thức sau
a, A = x\(^2\)+ 2x + y\(^2\)- 2y + 2023
b, B = 2x\(^2\)- 2xy + y\(^2\)- 4x + 2020
Giúp mik vs ạ^^
Hạn nộp là t6 tuần sau
\(1,a,A=x^2-6x+25\)
\(=x^2-2.x.3+9-9+25\)
\(=\left(x-3\right)^2+16\)
Ta có :
\(\left(x-3\right)^2\ge0\)Với mọi x
\(\Rightarrow\left(x-3\right)^2+16\ge16\)
Hay \(A\ge16\)
\(\Rightarrow A_{min}=16\)
\(\Leftrightarrow x=3\)
\(b,B=4x^2+4x-2\)
\(B=4x^2+4x+1-3\)
\(B=\left(4x^2+4x+1\right)-3\)
\(B=\left(2x+1\right)^2-3\)
Ta có :
\(\left(2x+1\right)^2\ge0\)với mọi x
\(\Rightarrow\left(2x+1\right)^2-3\ge-3\)
\(\Leftrightarrow B\ge-3\)
\(\Rightarrow B_{min}=-3\)
\(\Leftrightarrow x=-\frac{1}{2}\)
\(c,C=x^2+x\)
Ta có :
\(x^2\ge0\)với mọi x
\(\Rightarrow x^2+x\ge x\)
\(\Leftrightarrow C\ge x\)
\(\Rightarrow C_{min}=x\)
\(\Leftrightarrow x=0\)
tìm giá trị nhỏ nhất của biểu thức: C=2x^2+y^2-4x+2xy+1
\(C=2x^2+y^2-4x+2xy+1\)
\(=\left(x^2+2xy+y^2\right)+\left(x^2-4x+4\right)-3\)
\(=\left(x+y\right)^2+\left(x-2\right)^2-3\ge-3\)
-Dấu bằng xảy ra khi và chỉ khi \(x=2\) và \(y=-2\).
Câu 15: ( 1.5 điểm)
a) Tìm giá trị nhỏ nhất của biểu thức:
A = ( 2x - 3y+1)2 + ( 2 + y) 2 - 12x + 2020
b) Chứng minh biểu thức sau có giá trị không phụ thuộc vào giá trị của biến:
B = ( x - 2y)(x2 + 2xy + 4y2) - x ( x + 2)(x - 2) - 4x + 8y3 + 2021
b: \(B=x^3-8y^3-x^3+4x-4x+8y^3+2021=2021\)
Phân tích đa thức sau thành phân tử
a, 4x³ - 10x² + 2x
b, x² - 3x + 2
Giúp mk vs m.n
Hình thang ABCD (AB//CD) có các tia phân giác của các góc A và D gặp nhau tại điểm E thuộc cạnh BC. Chứng minh rằng:
a, AED = 90°
b, AD = AB + CD
Giúp mình với mọi người :(((
a) Tìm giá trị nhỏ nhất của biểu thức: A = 4x2 - 12x + 100
b) Tìm giá trị lớn nhất của biểu thức: B = -x2 - x + 1
c) Tìm giá trị nhỏ nhất của biểu thức: C = 2x2 + 2xy + y2 - 2x + 2y + 2
a) \(A=4x^2-12x+100=\left(2x\right)^2-12x+3^2+91=\left(2x-3\right)^2+91\)
Ta có: \(\left(2x-3\right)^2\ge0\forall x\inℤ\)
\(\Rightarrow\left(2x-3\right)^2+91\ge91\)
hay A \(\ge91\)
Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\)
<=> 2x-3=0
<=> 2x=3
<=> \(x=\frac{3}{2}\)
Vậy Min A=91 đạt được khi \(x=\frac{3}{2}\)
b) \(B=-x^2-x+1=-\left(x^2+x-1\right)=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
Ta có: \(-\left(x+\frac{1}{2}\right)^2\le0\forall x\)
\(\Rightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\) hay B\(\le\frac{5}{4}\)
Dấu "=" \(\Leftrightarrow-\left(x+\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow x+\frac{1}{2}=0\)
\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy Max B=\(\frac{5}{4}\)đạt được khi \(x=\frac{-1}{2}\)
\(C=2x^2+2xy+y^2-2x+2y+2\)
\(C=x^2+2x\left(y-1\right)+\left(y-1\right)^2+x^2+1\)
\(\Leftrightarrow C=\left(x+y-1\right)^2+x^2+1\)
Ta có:
\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x;y\inℤ\\x^2\ge0\forall x\inℤ\end{cases}}\)
\(\Leftrightarrow\left(x+y-1\right)^2+x^2+1\ge1\)
hay C\(\ge\)1
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-1\right)^2=0\\x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=0\end{cases}}}\)
Vậy Min C=1 đạt được khi y=1 và x=0