Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Gia Bích
Xem chi tiết
₮ØⱤ₴₮
27 tháng 6 2019 lúc 9:32

\(\frac{1}{1+a^2}-\frac{1}{1+ab}+\frac{1}{1+b^2}-\frac{1}{1+ab}\ge0\)

\(\frac{1+a^2-1-ab}{\left(1+a^2\right)\left(1+ab\right)}+\frac{1+b^2-1-ab}{\left(1+b^2\right)\left(1+ab\right)}\)

\(\frac{a^2-ab}{\left(1+a^2\right)\left(1+ab\right)}+\frac{b^2-ab}{\left(1+b^2\right)\left(1+ab\right)}\)

\(\frac{a^2-ab}{\left(1+a^2\right)\left(1+ab\right)}+\frac{b^2-ab}{\left(1+b^2\right)\left(1+ab\right)}\)

\(\frac{\left(ab-1\right)\left(b-a\right)^2}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\left(1\right)\)

\(a\ge b\ge1=>ab\ge0\left(2\right)\)

(1)(2)=>đề bài

khoimzx
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 2 2020 lúc 22:50

\(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\Leftrightarrow\frac{2+a^2+b^2}{\left(1+a^2+b^2+a^2b^2\right)}\ge\frac{2}{1+ab}\)

\(\Leftrightarrow\left(1+ab\right)\left(2+a^2+b^2\right)\ge2a^2b^2+2a^2+2b^2+2\)

\(\Leftrightarrow ab\left(a^2+b^2-2ab\right)-\left(a^2+b^2-2ab\right)\ge0\)

\(\Leftrightarrow\left(ab-1\right)\left(a-b\right)^2\ge0\)

b/ \(\frac{1}{1+a^4}+\frac{1}{1+b^4}+\frac{2}{1+b^4}\ge\frac{2}{1+a^2b^2}+\frac{2}{1+b^4}\ge\frac{4}{1+ab^3}\)

\(\Rightarrow\frac{1}{1+a^4}+\frac{3}{1+b^4}\ge\frac{4}{1+ab^3}\)

Hoàn toàn tương tự: \(\frac{1}{1+b^4}+\frac{3}{1+c^4}\ge\frac{4}{1+bc^3}\); \(\frac{1}{1+c^4}+\frac{3}{1+a^4}\ge\frac{4}{1+a^3c}\)

Cộng vế với vế ta có đpcm

Khách vãng lai đã xóa
Minh Hoàng Nguyễn
Xem chi tiết
Akai Haruma
17 tháng 5 2020 lúc 12:02

Lời giải:

Thực chất đề bài chỉ cần điều kiện $ab\geq 1$ là đủ rồi bạn.

BĐT cần chứng minh tương đương với:

\(\frac{a^2+b^2+2}{(a^2+1)(b^2+1)}\geq \frac{2}{ab+1}\)

\(\Leftrightarrow (a^2+b^2+2)(ab+1)\geq 2(a^2+1)(b^2+1)\)

\(\Leftrightarrow ab(a^2+b^2)+2ab\geq 2a^2b^2+a^2+b^2\)

\(\Leftrightarrow ab(a^2+b^2-2ab)-(a^2+b^2-2ab)\geq 0\)

\(\Leftrightarrow ab(a-b)^2-(a-b)^2\geq 0\Leftrightarrow (ab-1)(a-b)^2\geq 0\)

(luôn đúng với mọi $ab\geq 1$)

Do đó ta có đpcm.

Dấu "=" xảy ra khi $ab=1$ hoặc $a=b$

Nguyễn Gia Bích
Xem chi tiết
Duc Loi
19 tháng 5 2019 lúc 8:34

Ta có: \(a\ge b\Rightarrow1+b^2\le1+a^2\)

\(\Rightarrow\frac{1}{1+b^2}\ge\frac{1}{1+a^2}\Rightarrow\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{1}{1+a^2}+\frac{1}{1+a^2}\)

\(\Leftrightarrow\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+a^2}\)

hilary
Xem chi tiết
Y
1 tháng 5 2019 lúc 11:02

\(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\)

\(\Leftrightarrow\frac{1+b^2+1+a^2}{\left(1+a^2\right)\left(1+b^2\right)}\ge\frac{2}{1+ab}\)

\(\Leftrightarrow\left(a^2+b^2+2\right)\left(1+ab\right)\ge2\left(1+a^2\right)\left(1+b^2\right)\)

\(\Leftrightarrow a^2+b^2+a^3b+ab^3+2ab+2\ge2a^2b^2+2a^2+2b^2+2\)

\(\Leftrightarrow a^3b+ab^3-2a^2b^2-a^2-b^2+2ab\ge0\)

\(\Leftrightarrow ab\left(a^2-2ab+b^2\right)-\left(a^2-2ab+b^2\right)\ge0\)

\(\Leftrightarrow\left(ab-1\right)\left(a-b\right)^2\ge0\)

Vì bđt cuối luôn đúng với mọi \(a\ge1;b\ge1\) mà các biến đổi trên là tương đương nên bđt đầu luôn đúng

Dấu "=" xảy ra \(\Leftrightarrow a=b\)

Nguyễn Thiều Công Thành
Xem chi tiết
khoimzx
Xem chi tiết
khoimzx
23 tháng 5 2020 lúc 18:05

câu 6 là với mọi a,b,c lớn hơn hoặc bằng 1 nhé

khoimzx
23 tháng 5 2020 lúc 18:38

help me !!!!!!

Hoàng Tử Lớp Học
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
26 tháng 11 2020 lúc 19:25

Tự nhiên lục được cái này :'( 

3. Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{\left(1+1\right)^2}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)

\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{b+c-a+c+a-b}=\frac{4}{2c}=\frac{2}{c}\)

\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{a+b-c+c+a-b}=\frac{4}{2a}=\frac{2}{a}\)

Cộng theo vế ta có điều phải chứng minh

Đẳng thức xảy ra <=> a = b = c 

Khách vãng lai đã xóa
Annie Scarlet
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 9 2019 lúc 22:29

Với \(a;b;c\ne0\) ta luôn có:

\(\left(\frac{1}{a}-\frac{1}{b}\right)^2+\left(\frac{1}{b}-\frac{1}{c}\right)^2+\left(\frac{1}{c}-\frac{1}{a}\right)^2\ge0\)

\(\Leftrightarrow\frac{2}{a^2}+\frac{2}{b^2}+\frac{2}{c^2}-\frac{2}{ab}-\frac{2}{bc}-\frac{2}{ca}\ge0\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)

Dấu "=" xảy ra khi \(a=b=c\ne0\)

Nguyễn Việt Lâm
20 tháng 9 2019 lúc 22:37

Do \(x;y\in N\) *\(\Rightarrow x+y\ge2\)

\(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)

\(\Rightarrow\frac{x+y}{x^2+y^2}\le\frac{2\left(x+y\right)}{\left(x+y\right)^2}=\frac{2}{x+y}\)

\(\Rightarrow\frac{2}{x+y}\ge\frac{3}{5}\Rightarrow x+y\le\frac{10}{3}\)

\(\Rightarrow x+y=\left\{2;3\right\}\)

TH1: \(x=y=1\Rightarrow\frac{x+y}{x^2+y^2}=1\left(ktm\right)\)

TH2: \(\left(x;y\right)=\left(1;2\right);\left(2;1\right)\)

\(\Rightarrow\frac{x+y}{x^2+y^2}=\frac{3}{5}\left(tm\right)\)

Nguyễn Việt Lâm
20 tháng 9 2019 lúc 22:58

\(a+b+c=6abc\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=6\)

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow xy+yz+zx=6\)

\(P=\frac{y^3}{x}+\frac{z^3}{y}+\frac{x^3}{z}=\frac{y^4}{xy}+\frac{z^4}{yz}+\frac{x^4}{zx}\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+yz+zx}\)

\(P\ge\frac{\left(xy+yz+zx\right)^2}{xy+yz+zx}=xy+yz+zx=6\)

\(P_{min}=6\) khi \(x=y=z=\sqrt{2}\Rightarrow a=b=c=\frac{1}{\sqrt{2}}\)