\(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\)
cm với a≥b≥1 : \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\)
\(\frac{1}{1+a^2}-\frac{1}{1+ab}+\frac{1}{1+b^2}-\frac{1}{1+ab}\ge0\)
\(\frac{1+a^2-1-ab}{\left(1+a^2\right)\left(1+ab\right)}+\frac{1+b^2-1-ab}{\left(1+b^2\right)\left(1+ab\right)}\)
\(\frac{a^2-ab}{\left(1+a^2\right)\left(1+ab\right)}+\frac{b^2-ab}{\left(1+b^2\right)\left(1+ab\right)}\)
\(\frac{a^2-ab}{\left(1+a^2\right)\left(1+ab\right)}+\frac{b^2-ab}{\left(1+b^2\right)\left(1+ab\right)}\)
\(\frac{\left(ab-1\right)\left(b-a\right)^2}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\left(1\right)\)
\(a\ge b\ge1=>ab\ge0\left(2\right)\)
(1)(2)=>đề bài
cho a,b>0 cm\(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\) nếu \(ab\ge1\)
b) cho a,b,c\(\ge\)1. CMR \(\frac{1}{1+a^4}+\frac{1}{1+b^4}+\frac{1}{1+c^4}\ge\frac{1}{1+ab^3}+\frac{1}{1+bc^3}+\frac{1}{1+ca^3}\)
\(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\Leftrightarrow\frac{2+a^2+b^2}{\left(1+a^2+b^2+a^2b^2\right)}\ge\frac{2}{1+ab}\)
\(\Leftrightarrow\left(1+ab\right)\left(2+a^2+b^2\right)\ge2a^2b^2+2a^2+2b^2+2\)
\(\Leftrightarrow ab\left(a^2+b^2-2ab\right)-\left(a^2+b^2-2ab\right)\ge0\)
\(\Leftrightarrow\left(ab-1\right)\left(a-b\right)^2\ge0\)
b/ \(\frac{1}{1+a^4}+\frac{1}{1+b^4}+\frac{2}{1+b^4}\ge\frac{2}{1+a^2b^2}+\frac{2}{1+b^4}\ge\frac{4}{1+ab^3}\)
\(\Rightarrow\frac{1}{1+a^4}+\frac{3}{1+b^4}\ge\frac{4}{1+ab^3}\)
Hoàn toàn tương tự: \(\frac{1}{1+b^4}+\frac{3}{1+c^4}\ge\frac{4}{1+bc^3}\); \(\frac{1}{1+c^4}+\frac{3}{1+a^4}\ge\frac{4}{1+a^3c}\)
Cộng vế với vế ta có đpcm
Cho a≥1 b≥1 thỏa mãn: a≥1 b≥1:
CMR:
\(\frac{1}{a^2+1}+\frac{1}{b^2+1}\ge\frac{2}{ab+1}\)
Lời giải:
Thực chất đề bài chỉ cần điều kiện $ab\geq 1$ là đủ rồi bạn.
BĐT cần chứng minh tương đương với:
\(\frac{a^2+b^2+2}{(a^2+1)(b^2+1)}\geq \frac{2}{ab+1}\)
\(\Leftrightarrow (a^2+b^2+2)(ab+1)\geq 2(a^2+1)(b^2+1)\)
\(\Leftrightarrow ab(a^2+b^2)+2ab\geq 2a^2b^2+a^2+b^2\)
\(\Leftrightarrow ab(a^2+b^2-2ab)-(a^2+b^2-2ab)\geq 0\)
\(\Leftrightarrow ab(a-b)^2-(a-b)^2\geq 0\Leftrightarrow (ab-1)(a-b)^2\geq 0\)
(luôn đúng với mọi $ab\geq 1$)
Do đó ta có đpcm.
Dấu "=" xảy ra khi $ab=1$ hoặc $a=b$
cm với \(a\ge b\ge1:\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\)
Ta có: \(a\ge b\Rightarrow1+b^2\le1+a^2\)
\(\Rightarrow\frac{1}{1+b^2}\ge\frac{1}{1+a^2}\Rightarrow\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{1}{1+a^2}+\frac{1}{1+a^2}\)
\(\Leftrightarrow\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+a^2}\)
cho 2 số a và b thỏa mãn a≥1, b≥1. CM: \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\)≥\(\frac{2}{1+ab}\)
\(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\)
\(\Leftrightarrow\frac{1+b^2+1+a^2}{\left(1+a^2\right)\left(1+b^2\right)}\ge\frac{2}{1+ab}\)
\(\Leftrightarrow\left(a^2+b^2+2\right)\left(1+ab\right)\ge2\left(1+a^2\right)\left(1+b^2\right)\)
\(\Leftrightarrow a^2+b^2+a^3b+ab^3+2ab+2\ge2a^2b^2+2a^2+2b^2+2\)
\(\Leftrightarrow a^3b+ab^3-2a^2b^2-a^2-b^2+2ab\ge0\)
\(\Leftrightarrow ab\left(a^2-2ab+b^2\right)-\left(a^2-2ab+b^2\right)\ge0\)
\(\Leftrightarrow\left(ab-1\right)\left(a-b\right)^2\ge0\)
Vì bđt cuối luôn đúng với mọi \(a\ge1;b\ge1\) mà các biến đổi trên là tương đương nên bđt đầu luôn đúng
Dấu "=" xảy ra \(\Leftrightarrow a=b\)
\(\frac{a^2b+bc^2-1}{ac\left(a+c\right)}+\frac{b^2c+ca^2-1}{ab\left(a+b\right)}+\frac{c^2a+ab^2-1}{bc\left(b+c\right)}\)
\(=\frac{a^2b^2+b^2c^2-b}{a+c}+\frac{b^2c^2+c^2a^2-c}{a+b}+\frac{c^2a^2+a^2b^2-a}{b+c}\)
\(=\frac{\frac{1}{a^2}-\frac{1}{ac}+\frac{1}{c^2}}{a+c}+\frac{\frac{1}{b^2}-\frac{1}{ab}+\frac{1}{a^2}}{a+b}+\frac{\frac{1}{c^2}-\frac{1}{bc}+\frac{1}{b^2}}{b+c}\ge\frac{1}{ac\left(a+c\right)}+\frac{1}{bc\left(b+c\right)}+\frac{1}{ab\left(b+a\right)}\)
\(=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)
Cho a,b,c > 0. CMR:
1. \(a^3+b^3+c^3\ge3abc\)
2. \(\frac{x^2}{a}+\frac{y^2}{b}\ge\frac{\left(x+y\right)^2}{a+b}\)
3. \(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\ge\frac{\left(x+y+z\right)^2}{a+b+c}\)
4. \(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
5. \(\frac{1}{\left(a+1\right)^2}+\frac{1}{\left(b+1\right)^2}\ge\frac{1}{ab+1}\)
6.\(\frac{1}{1+a^3}+\frac{1}{1+b^3}+\frac{1}{1+c^3}\ge\frac{3}{1+abc}\)
cho a, b, c>0. CMR a\(\frac{a^3}{b}\ge a^2+ab-b^2\)
CM \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\)
Cho a, b, c là độ dài 3 cạnh của tam giác CM \(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Tự nhiên lục được cái này :'(
3. Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{\left(1+1\right)^2}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)
\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{b+c-a+c+a-b}=\frac{4}{2c}=\frac{2}{c}\)
\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{a+b-c+c+a-b}=\frac{4}{2a}=\frac{2}{a}\)
Cộng theo vế ta có điều phải chứng minh
Đẳng thức xảy ra <=> a = b = c
Chứng minh \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)
Với \(a;b;c\ne0\) ta luôn có:
\(\left(\frac{1}{a}-\frac{1}{b}\right)^2+\left(\frac{1}{b}-\frac{1}{c}\right)^2+\left(\frac{1}{c}-\frac{1}{a}\right)^2\ge0\)
\(\Leftrightarrow\frac{2}{a^2}+\frac{2}{b^2}+\frac{2}{c^2}-\frac{2}{ab}-\frac{2}{bc}-\frac{2}{ca}\ge0\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)
Dấu "=" xảy ra khi \(a=b=c\ne0\)
Do \(x;y\in N\) *\(\Rightarrow x+y\ge2\)
\(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)
\(\Rightarrow\frac{x+y}{x^2+y^2}\le\frac{2\left(x+y\right)}{\left(x+y\right)^2}=\frac{2}{x+y}\)
\(\Rightarrow\frac{2}{x+y}\ge\frac{3}{5}\Rightarrow x+y\le\frac{10}{3}\)
\(\Rightarrow x+y=\left\{2;3\right\}\)
TH1: \(x=y=1\Rightarrow\frac{x+y}{x^2+y^2}=1\left(ktm\right)\)
TH2: \(\left(x;y\right)=\left(1;2\right);\left(2;1\right)\)
\(\Rightarrow\frac{x+y}{x^2+y^2}=\frac{3}{5}\left(tm\right)\)
\(a+b+c=6abc\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=6\)
Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow xy+yz+zx=6\)
\(P=\frac{y^3}{x}+\frac{z^3}{y}+\frac{x^3}{z}=\frac{y^4}{xy}+\frac{z^4}{yz}+\frac{x^4}{zx}\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+yz+zx}\)
\(P\ge\frac{\left(xy+yz+zx\right)^2}{xy+yz+zx}=xy+yz+zx=6\)
\(P_{min}=6\) khi \(x=y=z=\sqrt{2}\Rightarrow a=b=c=\frac{1}{\sqrt{2}}\)