Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hằng Nguyễn
Xem chi tiết
Đặng Gia Ân
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 3 2021 lúc 10:53

Do pt có 1 nghiệm là \(2-\sqrt{3}\)

\(\Rightarrow\left(2-\sqrt{3}\right)^2+a\left(2-\sqrt{3}\right)+b=0\)

\(\Leftrightarrow7-4\sqrt{3}+2a-a\sqrt{3}+b=0\)

\(\Leftrightarrow2a+b+7=\left(a+4\right)\sqrt{3}\)

Vế trái là số hữu tỉ, vế phải vô tỉ nên đẳng thức xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}a+4=0\\2a+b+7=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-4\\b=1\end{matrix}\right.\)

phan tuấn anh
Xem chi tiết
Nguyễn Tuấn
28 tháng 2 2016 lúc 21:24

Ta có:

\(x^2+y^2+x+y=4\)x(x+y+1)+y(y+1)=2

=>

x^2+y^2+x+y=4x^2+y^2+x+y+xy=2

=>

(x+y)^2+(x+y)-2xy=4xy=-2

=>

(x+y)(x+y+1)=0xy=-2

=>1)

x+y=0xy=-2

2)

x+y=-1xy=-2

giải các hệ pt 1) và 2) ta được (x;y)=(\(\left(\sqrt{2};-\sqrt{2}\right),\left(-\sqrt{2};\sqrt{2}\right),\left(-2;1\right),\left(1;-2\right)\)

Nguyễn Thị Trà My
Xem chi tiết
Phan Nghĩa
5 tháng 7 2020 lúc 8:26

để phương trình có 2 nghiệm phân biệt thì :

\(\Delta>0< =>a^2-4b-4>0\)

\(< =>a^2>4b+4\)

Ta có : \(\hept{\begin{cases}x_1-x_2=3\\x_1^3+x_2^3=9\end{cases}}\)\(< =>\hept{\begin{cases}\left(x_1-x_2\right)^2=9\\\left(x_1+x_2\right)\left(x_1^2-x_1x_2+x_2^2\right)=9\end{cases}}\)

\(< =>\hept{\begin{cases}\left(x_1+x_2\right)^2-4x_1x_2=9\\\left(x_1+x_2\right)\left[\left(x_1+x_2\right)^2-3x_1x_2\right]=9\end{cases}}\)

Theo hệ thức Vi ét : \(\hept{\begin{cases}x_1+x_2=-a\\x_1x_2=b+1\end{cases}}\)

Thay vào ta được hệ phương trình 2 ẩn sau :

\(\hept{\begin{cases}\left(-a\right)^2-4\left(b+1\right)=9\\\left(-a\right)\left[\left(-a\right)^2-3\left(b+1\right)\right]=9\end{cases}}\)

\(< =>\hept{\begin{cases}a^2-4b-4=9\\\left(-a\right)\left(a^2-3b-3\right)=9\end{cases}}\)

đến đây thì dễ rồi ha 

Khách vãng lai đã xóa
Ngọc Vĩ
Xem chi tiết
Mr Lazy
11 tháng 7 2015 lúc 21:14

\(A=\left(\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)^2-2=\left[\frac{x_1^2+x^2_2}{x_1x_2}\right]^2-2=\left[\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}\right]^2-2\)

\(=\left[\frac{\left(2m-2\right)^2}{2m-5}-2\right]^2-2\)\(=\left(\frac{4m^2-8m+4}{2m-5}-2\right)^2-2=\left(2m-1+\frac{9}{2m-5}\right)^2-2\)

A nguyên khi \(\left(2m-1+\frac{9}{2m-5}\right)^2\in Z\)

\(\Leftrightarrow B=2m-1+\frac{9}{2m-5}=\frac{8m^2-12m+14}{2m-5}\)\(=\sqrt{k}\) với k là một số nguyên dương.

\(\Rightarrow8m^2-12m+14=\sqrt{k}\left(2m-5\right)\)\(\Leftrightarrow8m^2-2\left(6+\sqrt{k}\right)m+14+5\sqrt{k}=0\text{ (1)}\)

(1) có nghiệm m khi \(\Delta'=\left(\sqrt{k}+6\right)^2-8\left(14+5\sqrt{k}\right)\ge0\)

\(\Leftrightarrow k-28\sqrt{k}-76\ge0\Leftrightarrow\sqrt{k}\le14-4\sqrt{17}

Như Nguyễn
Xem chi tiết
♥➴Hận đời FA➴♥
12 tháng 2 2019 lúc 19:58

viết lại câu hỏi khác đi, đề không rõ ràng X với x rồi . lung tung, dung công cụ soạn thảo đi nha bạn

Tú72 Cẩm
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 9 2023 lúc 13:53

a: \(\left\{{}\begin{matrix}ax+y=2a\\x-a=1-ay\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}ax+y=2a\\x+ay=a+1\end{matrix}\right.\)

Khi a=2 thì hệ sẽ là \(\left\{{}\begin{matrix}2x+y=4\\x+2y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+y=4\\2x+4y=6\end{matrix}\right.\)

=>-3y=-2 và x+2y=3

=>y=2/3 và x=3-2y=3-4/3=5/3

2:

a: Để hệ có 1 nghiệm duy nhất thì \(\dfrac{a}{1}< >\dfrac{1}{a}\)

=>a^2<>1

=>a<>1 và a<>-1

Để hệ có vô số nghiệm thì \(\dfrac{a}{1}=\dfrac{1}{a}=\dfrac{2a}{a+1}\)

=>a^2=1 và a^2+a=2a

=>a=1

Để hệ vô nghiệm thì \(\dfrac{a}{1}=\dfrac{1}{a}< >\dfrac{2a}{a+1}\)

=>a^2=1 và a^2+a<>2a

=>a=-1

hakito
Xem chi tiết
Eren
9 tháng 12 2018 lúc 20:18

Giả sử pt có 2 nghiệm x1, x2. Theo hệ thức Vi-ét ta có: x1 + x2 = a

Giả sử a không là số nguyên => x1 + x2 không là số nguyên. Mà x1, x2 đều là các số nguyên => vô lý. Như vậy, a là số nguyên

Δ = (-a)2 - 4.(a + 2016) = a2 - 4a - 8064

Pt có nghiệm <=> Δ ≥ 0 <=> a ≤ -88 hoặc a ≥ 92

a là số nguyên => Δ là 1 số chính phương

Đặt Δ = a2 - 4a - 8064 = k2 (k ∈ N)

<=> (a2 - 4a + 4) - k2 = 8068

<=> (a - 2)2 - k2 = 8068

<=> (a - k - 2)(a + k - 2) = 8068

Tới đây bí

Mie Chang
Xem chi tiết

loading...