chứng tỏ rằng số ababab + 3 là hợp số
giải chi tiết , nhanh tick cho
nhớ là số ababab nhé!
Chứng tỏ rằng 1443 là ước của số có dạng ababab, (Giúp mình luôn nha). Trình bày chi tiết một chút.
Ta có ababab = 10101 x ab mà 10101 chia hết cho 1443 (10101=1443x70) nên 1443 là ước của số có dạng ababab.
Vì abba là bội của 11 nên abba chia hết cho 11
Theo công thức:(a+b)-(b+a)=0
Mà 0 chia hết cho 11
Vậy...
học tốt
Cho ababab (số tự nhiên) là số có 6 chữ số. Chứng tỏ rằng ababab (số tự nhiên) là bội của 3.
ababab=a*100000+b*10000+a*1000+b*100+a*10+b=(a*1 00000+a*1000+a*10)+(b*10000+b*100+b)=a*(100000+100 0+10)+b*(10000+100+1)=a*101010+b*10101
Ta có:
Vì 101010 chia hết cho 3 a*101010 chia hết cho 3
Vì 10101 chia hết cho 3 b*10101 chia hết cho 3
Vì 2 số hạng đều chia hết cho 3 tổng chia hết cho 3
ababab chia hết cho 3 ababab là bội của 3 (ĐPCM)
tong cac chu so bang a+b+a+b+a+b=3a+3b=3(a+b) chia het cho 3( la boi cua 3)
Tick nha
ababab=a*101010+b*10101
mà 101010 và 10101 chia hết cho 3
nên ababab chia hết cho3
Cho ababab là số có 6 chữ số , chứng tỏ rằng ababab là bội của 3
Bạn chứng minh bằng 2 cách như sau:
ababab = ab x 10101 = ab x 3 x 3367
Chia hết cho 3
Cách 2: Dựa vào dấu hiệu chia hết
ababab có tổng các chữ số là: a + b + a + b + a + b = 3a + 3b = 3(a+ b)
Chia hết cho 3
Ta có:
Vì 101010 chia hết cho 3a*101010 chia hết cho 3
Vì 10101 chia hết cho 3b*10101 chia hết cho 3
Vì 2 số hạng đều chia hết cho 3tổng chia hết cho 3
ababab chia hết cho 3ababab là bội của 3
Cho ababab là số có 6 chữ số, chứng tỏ số ababab là bội của 3(ababab là số tự nhiên)
\(\overline{ababab}=100000a+10000b+1000a+100b+10a+b\)
\(\Rightarrow\left(100000a+1000a+10a\right)+\left(10000b+100b+b\right)\)
\(\Rightarrow101010a+10101b\)
\(\Rightarrow3.33670+3.3367\)
\(\Rightarrow3\left(33670+3367\right)⋮3\) nên là bội của 3.(đpcm)
\(\overline{ababab}\)=\(\overline{ab0000}\)+\(\overline{ab00}\)+\(\overline{ab}\)
= \(\overline{ab}\)x10000+\(\overline{ab}\)x100+\(\overline{ab}\)x1
=\(\overline{ab}\)x﴾10000+100+1﴿
=\(\overline{ab}\)x10101
Ta có 10101 chia hết cho 3 nên \(\overline{ab}\)x10101 chia hết cho3
\(\Rightarrow\)\(\overline{ababab}\) là bội của 3
Vậy\(\overline{ababab}\) là bội của 3.
\(ababab=ab0000+ab00+ab\)
\(=ab.10000+ab.100+ab.1\)
\(=ab.\left(10000+100+1\right)\)
\(=ab.10101\)
Ta có : \(10101⋮3\)
nên \(ab.10101⋮3\)
\(\Rightarrow ababab\) là \(B_{\left(3\right)}\)
Cho ababab là số có sáu chữ số, chứng tỏ số ababab là bội của 3.
Có :\(\overline{ababab}=100000a+10000b+1000a+100b+10a+b\)
\(=101010a+10101b⋮3\)
Nên \(\overline{ababab}\) là bội của 3.
ababab là bội của 3
=> a+b+a+b+a+b chia hết cho 3
=>3a+3b chia hết cho 3
=>3(a+b) chia hết cho 3
=>ababab chia hết cho 3
Vậy ababab thuộc bội của 3
cho ababab là số có sáu chữ số, chứng tỏ số ababab là bội của 3
Đặt A = \(\overline{ababab}\)
xét tổng các chữ số của số A ta có :
a + b + a + b + a + b = 3a + 3b = 3.(a+b) ⋮ 3 ⇒ A ⋮ 3
⇒ A là bội của 3 (đpcm)
ababab = 100000a + 10000b + 1000a + 100b + 10a + b
= 101010a + 10101b
= 3.33670a + 3.3367b
= 3.(33670a + 3367b) ⋮ 3
⇒ ababab ⋮ 3
cho \(\overline{ababab}\) là số có 6 chữ số , chứng tỏ \(\overline{ababab}\) là bội của 3
Tham khảo:D
ababab = ab0000 + ab00 + ab
= ab . 10000 + ab . 100 + ab . 1
= ab . (10000 + 100 + 1)
= ab . 10101
Ta có: 10101 chia hết cho 3 nên ab . 10101 chia hết cho 3
Suy ra: ababab là bội của 3
Giải thích các bước giải:
Vì theo khái niệm về số chia hết cho 3 ta thấy tổng các chữ số a + b + a + b + a + b
mà a + b + a + b + a + b = a . 3 + b . 3
Vậy từ đó suy ra ababab chia hết cho 3.
Tham khảo
ababab = ab0000 + ab00 + ab
= ab . 10000 + ab . 100 + ab . 1
= ab . (10000 + 100 + 1)
= ab . 10101
Ta có: 10101 chia hết cho 3 nên ab . 10101 chia hết cho 3
Suy ra: ababab là bội của 3
ta có : ababab=ab0000+ab00+ab
= ab.10000 +ab.100+ab
= ab.(10000+100+1)
= ab.10101
Mà 10101 chia hết cho 3
=> ab .10101 chia hết cho 3=> ababab chia hết cho 3(đpcm)
(bạn viết vào vở thì thêm gạch trên đầu cho các chữ số ab nhé)
a)Cho ababab là số có sáu chữ số, chứng tỏ số ababab là bội của 3
có 2 cách làm:
c1:ababab=ab0000+ab00+ab=abx10000+abx100+abx1=abx(10000+100+1)=abx10101
Vì 10101 chia hết cho 3 nên ab cũng chia hết cho 3
Vậy ababab chia hết cho 3
c2: VÌ theo khái niệm về số chia hết cho 3 ta thấy tổng các chữ số a+b+a+b+a+b
mà a+b+a+b+a+b=a . 3 + b . 3
Vậy từ đó ta suy ra ababab chia hết cho 3
ababab=10000ab+100ab+a1ab=ab[10000+100+1]=ab.10101 Mà 10101 chia hết cho 3
=>ababab chia hết cho 3
=>ababab thuộc B{3}
Cách 1 :
Ta có :
ababab =ab.10000+ab.1000+ab.100+ab.1
=ab.(10000+100+1)
=ab.10101
Mà 10101 chia hết cho 3
=> ababab chia hết cho 3
=> ababab là bội của 3
Cách 2 :
Ta có :
Tổng các số hạng của abababa là:
a+b+a+b+a+b = 3a+3b
=> ababab là bội của 3
Chứng tỏ rằng ababab + 2019 là hợp số
kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk