Với m ∈ Z . Chứng minh rằng m(m + 1)(2m + 1) ⋮ 6
chứng minh rằng 2m+1 phần m+1 là phân số tối giản với m không bằng - I ; m e z
Gọi ƯCLN( \(2m+1;m+1\) ) = \(d\)
Ta có :
\(\begin{cases} 2m + 1 \vdots d\\m + 1 \vdots d\end{cases} \)
=> \(\begin{cases} 2m + 1 \vdots d\\2(m + 1) \vdots d \end{cases} \)
=> \(2( m + 1 ) - ( 2m + 1 ) \vdots d\)
=> \(2m +2 - 2m-1\vdots d\)
=> \(1\vdots d \)
<=> \(d \in \) { \(\pm\) 1 }
=> \(\dfrac{ 2m + 1 }{ m + 1 }\) tối giản \(\forall m \in \mathbb{Z} ; m \ne 1\)
chứng minh rằng m(m+1)(2m+1) chia hết cho 6 với m thuộc N
Chứng minh rằng :với mọi m thuộc số nguyên có
m(2m-3)-2m(m+1)⋮5
giúp minh với
\(m\left(2m-3\right)-2m\left(m+1\right)\)
\(=2m^2-3m-2m^2-2m=-5m⋮5\Rightarrow dpcm\)
\(m\left(2m-3\right)-2m\left(m+1\right)\)
\(=2m^2-3m-2m^2-2m\)
\(=-5m⋮5\) \(\forall m\in Z\)
Vậy \(m\left(2m-3\right)-2m\left(m+1\right)⋮m\left(\forall m\in Z\right)\)
a, Chứng minh rằng với mọi m thuộc Z ta luôn có m3 - m chia hết cho 6 .
b, Chứng minh rằng với mọi n thuộc Z ta luôn có ( 2n - 1 ) - 2n + 1 chia hết cho 8
a) Ta có: m^3-m = m(m^2-1^2) = m.(m+1)(m-1) là tích của 3 số nguyên liên tiếp
=> m(m+1)(m-1) chia hết cho 3 và 2
Mà (3,2) = 1
=> m(m+1)(m-1) chia hết cho 6
=> m^3 - m chia hết cho 6 V m thuộc Z
b) Ta có: (2n-1)-2n+1 = 2n-1-2n+1 = 0-1+1 = 0 luôn chia hết cho 8
=> (2n-1)-2n+1 luôn chia hết cho 8 V n thuộc Z
Tick nha pham thuy trang
a, m3 - m = m( m2 - 12) = m(m - 1 ) ( m + 1) => 3 số nguyên liên tiếp : hết cho 6
mk chỉ biết có thế thôi
công thanh sai rồi số nguyên chứ đâu phải số tự nhiên
chứng minh rằng : với mọi n;m∈N* thoả mãn :
(2m-1;2n-1)=1 thì (m;n)=1
Lời giải:
Gọi $d$ là ƯCLN của $m$ và $n$. Khi đó:
$m=dx; n=dy$ với $x,y$ là 2 số nguyên dương nguyên tố cùng nhau.
\(2^m-1=2^{dx}-1=(2^d)^x-1\vdots 2^d-1\)
\(2^n-1=2^{dy}-1=(2^d)^y-1\vdots 2^d-1\)
Vì $(2^m-1, 2^n-1)=1$ nên $2^d-1=1$
$\Rightarrow d=1$
Tức là $(m,n)=1$
Chứng minh rằng phương trình:
\(5x^3+\left(2m-1\right)x^2+m+6=0\) luôn có ít nhất một nghiệm với mọi giá trị của tham số m
Chứng minh rằng phương trình:
\(5x^3+\left(2m-1\right)x^2+m+6=0\) luôn có ít nhất một nghiệm với mọi giá trị của tham số m
Chứng minh rằng phương trình:
\(5x^3+\left(2m-1\right)x^2+m+6=0\) luôn có ít nhất một nghiệm với mọi giá trị của tham số m
Đặt \(f\left(x\right)=5x^3+\left(2m-1\right)x^2+m+6\)
Hàm số liên tục trên R
\(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=\lim\limits_{x\rightarrow-\infty}\left(5x^3+\left(2m-1\right)x^2+m+6\right)\)
\(=\lim\limits_{x\rightarrow-\infty}x^3\left(5+\dfrac{2m-1}{x}+\dfrac{m+6}{x^3}\right)=-\infty< 0\)
\(\Rightarrow\) Luôn tồn tại 1 số thực \(a< 0\) sao cho \(f\left(a\right)< 0\)
\(\lim\limits_{x\rightarrow+\infty}\left(x^3+\left(2m-1\right)x^2+m+6\right)=\lim\limits_{x\rightarrow+\infty}x^3\left(5+\dfrac{2m-1}{x}+\dfrac{m+6}{x^3}\right)=+\infty.5=+\infty>0\)
\(\Rightarrow\) Luôn tồn tại 1 số thực \(b>0\) sao cho \(f\left(b\right)>0\)
\(\Rightarrow f\left(a\right).f\left(b\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc (a;b) với mọi m
Chứng minh rằng: phân số n/n+1 (n thuộc Z) tối giản
b) CMR: Phân số 246913579 / 123456790 tối giản
c) CMR: các phân số 2m+3 / m+1 ; 4m+8/ 2m+3 là các phân số tối giản với mọi m thuộc Z
Giải chi tiết nha!