Giúp mik bài này vs
Tính :
\(\frac{1}{\sqrt{3}+1}+\frac{1}{\sqrt{3}-1}-2\sqrt{3}\)
Rút gọn:
P = \(\frac{\sqrt{a-2}-2}{3}\cdot\left(\frac{\sqrt{a-2}}{3+\sqrt{a-2}}+\frac{a+7}{11-a}\right):\left(\frac{3\sqrt{a-2}+1}{a-3\sqrt{a-2}-2}-\frac{1}{\sqrt{a-2}}\right)\)
Mình nghĩ bài này đặt x = a - 2.Giúp mik vs mik trả tick đầy đủ
Đặt x=a-2,ta có : \(P=\frac{\sqrt{x}-2}{3}.\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{9-x}\right):\left(\frac{3\sqrt{x}+1}{x-3\sqrt{x}}-\frac{1}{\sqrt{x}}\right)\)
\(=\frac{\sqrt{x}-2}{3}.\left(\frac{\sqrt{x}\left(3-\sqrt{x}\right)+x+9}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\right):\left(\frac{3\sqrt{x}+1-\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-3\right)}\right)\)
\(=\frac{\sqrt{x}-2}{3}.\left(\frac{3\left(\sqrt{x}+3\right)}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\right):\left(\frac{2\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}-3\right)}\right)\)
\(=\frac{\sqrt{x}-2}{3}.\frac{3}{3-\sqrt{x}}.\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\left(\sqrt{x}+2\right)}\)
\(=\frac{-\sqrt{x}\left(\sqrt{x}-2\right)}{2\left(\sqrt{x}+2\right)}\)
Giúp mik vs
Tính A
A=\(\frac{2\sqrt{3}-4}{\sqrt{3}-1}+\frac{2\sqrt{2}-1}{\sqrt{2}-1}-\frac{1+\sqrt{6}}{\sqrt{2}+3}\)
Giải giúp mik 2 câu này vs . Mik cần gấp
Bài 1: Xét biểu thức: Q= \(\left(\frac{3}{\sqrt{1+a}}+\sqrt{1-a}\right):\left(\frac{3}{\sqrt{1-a^2}}\right)\) với -1<a<1
a) Rút gọn biểu thức Q
b) Tính giá trị của Q khi a=\(\frac{\sqrt{3}}{2}\)
Bài 2: a) Tìm giá trị lớn nhất của biểu thức A=\(\sqrt{9-x+\sqrt{x-1}}\)
b) Giải phương trình \(\sqrt{x+2\sqrt{x-1}+\sqrt{x-2\sqrt{x-1}=2}}\)
Bài 2 :
b) \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=2\) (1)
ĐKXĐ : \(x\ge1\)
Pt(1) tương đương :
\(\sqrt{\left(x-1\right)+2\sqrt{x-1}+1}+\sqrt{\left(x-1\right)-2\sqrt{x-1}+1}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\)
\(\Leftrightarrow\sqrt{x-1}+1+\left|\sqrt{x-1}-1\right|=2\) (*)
Xét \(x\ge2\Rightarrow\sqrt{x-1}-1\ge0\)
\(\Rightarrow\left|\sqrt{x-1}-1\right|=\sqrt{x-1}-1\)
Khi đó pt (*) trở thành :
\(\sqrt{x-1}+1+\sqrt{x-1}-1=2\)
\(\Leftrightarrow2\sqrt{x-1}=2\)
\(\Leftrightarrow\sqrt{x-1}=1\)
\(\Leftrightarrow x-1=1\)
\(\Leftrightarrow x=2\) ( Thỏa mãn )
Xét \(1\le x< 2\) thì \(x\ge2\Rightarrow\sqrt{x-1}-1< 0\)
Nên : \(\left|\sqrt{x-1}-1\right|=1-\sqrt{x-1}\). Khi đó pt (*) trở thành :
\(\sqrt{x-1}+1+1-\sqrt{x-1}=2\)
\(\Leftrightarrow2=2\) ( Luôn đúng )
Vậy tập nghiệm của phương trình đã cho là \(S=\left\{x|1\le x\le2\right\}\)
Bài 1 :
a) ĐKXĐ : \(-1\le a\le1\)
Ta có : \(Q=\left(\frac{3}{\sqrt{1+a}}+\sqrt{1-a}\right):\left(\frac{3}{\sqrt{1-a^2}}\right)\)
\(=\left(\frac{3+\sqrt{1-a}.\sqrt{1+a}}{\sqrt{1+a}}\right)\cdot\frac{\sqrt{1-a^2}}{3}\)
\(=\frac{3+\sqrt{\left(1-a\right)\left(1+a\right)}}{\sqrt{1+a}}\cdot\frac{\sqrt{\left(1-a\right)\left(1+a\right)}}{3}\)
\(=\frac{\left(3+\sqrt{1-a^2}\right).\sqrt{1-a}}{3}\)
Vậy \(Q=\frac{\left(3+\sqrt{1-a^2}\right).\sqrt{1-a}}{3}\) với \(-1\le a\le1\)
b) Với \(a=\frac{\sqrt{3}}{2}\) thỏa mãn ĐKXĐ \(-1\le a\le1\)nên ta có :
\(\hept{\begin{cases}1-a=1-\frac{\sqrt{3}}{2}=\frac{4-2\sqrt{3}}{4}=\frac{\left(\sqrt{3}-1\right)^2}{2^2}\\1-a^2=1-\frac{3}{4}=\frac{1}{4}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\sqrt{1-a}=\sqrt{\frac{\left(\sqrt{3}-1\right)^2}{2^2}}=\left|\frac{\sqrt{3}-1}{2}\right|=\frac{\sqrt{3}-1}{2}\\\sqrt{1-a^2}=\frac{1}{2}\end{cases}}\)
Do đó : \(Q=\frac{\left(3+\frac{1}{2}\right)\cdot\frac{\sqrt{3}-1}{2}}{3}=\frac{5\sqrt{3}-5}{12}\)
Các bạn giúp mình các bài này nha.
1. Tính:
a.\(\sqrt{\frac{3-\sqrt{5}}{3+\sqrt{5}}}\sqrt{\frac{4\sqrt{5}+8}{\sqrt{5}-2}}\)
b.\(\left(1+\frac{\sqrt{3}}{2}\right)\left(1-\frac{\sqrt{3}}{2}\right)-\left(1-\frac{\sqrt{3}}{2}\right)\left(1+\sqrt{1+\frac{\sqrt{3}}{2}}\right)\)
2.Tính giá trị nhỏ nhất:
\(-\sqrt{x}+x\)
3. Tính giá trị lớn nhất:
\(\sqrt{x}-x\)
Các bạn làm được bài này thì làm giúp mình nha. Mình bí quá
Tiếc quá
mình chưa học đến
bik thì giúp cho
cmr các đẳng thức :
1/\(\sqrt[3]{2}+\sqrt[3]{20}-\sqrt[3]{25}=3\sqrt{\sqrt[3]{5}-\sqrt[3]{4}}\)
2/\(\frac{\sqrt[4]{5}+1}{\sqrt[4]{5}-1}=\sqrt[4]{\frac{3+2\sqrt[4]{5}}{3-2\sqrt[4]{5}}}\)
3/\(\sqrt[3]{\sqrt[3]{2}-1}=\sqrt[3]{\frac{1}{9}}-\sqrt[3]{\frac{2}{9}}+\sqrt[3]{\frac{4}{9}}\)
giúp mik vs mik cần gấp lắm
Bài 1. cho \(f\left(x\right)=\left(2x^3-21x-29\right)^{2019}\). Tính f(x) tại \(x=\sqrt[3]{7+\sqrt{\frac{49}{8}}}+\sqrt[3]{7-\sqrt{\frac{49}{8}}}\)
Bài 2. Tìm số tự nhiên n biết rằng: \(\frac{1}{\sqrt{1^3+2^3}}+\frac{1}{\sqrt{1^3+2^3+3^3}}+...+\frac{1}{\sqrt{1^3+2^3+3^3+...+n^3}}=\frac{2015}{2017}\)
Bài 3. Tính \(A=\left(3x^3+8x^2+2\right)\)với \(x=\frac{\sqrt[3]{17\sqrt{5}-38}\left(\sqrt{5}+2\right)}{\sqrt{5}+\sqrt{14-6\sqrt{5}}}\)
Bài 4. CMR: \(\sqrt{1}+\sqrt{2}+...+\sqrt{n}\le n.\sqrt{\frac{n+1}{2}}\)
Nhìn cái đề bài đáng sợ kinh, ai giúp tớ vs
1, \(x^3=\left(7+\sqrt{\frac{49}{8}}\right)+\left(7-\sqrt{\frac{49}{8}}\right)+3x\sqrt[3]{\left(7+\sqrt{\frac{49}{8}}\right)\left(7-\sqrt{\frac{49}{8}}\right)}\)
\(=14+3x\cdot\frac{7}{2}=14+\frac{21x}{2}\)
\(\Leftrightarrow x^3-\frac{21}{2}x-14=0\)
Ta có: \(f\left(x\right)=\left(2x^3-21-29\right)^{2019}=\left[2\left(x^3-\frac{21}{2}x-14\right)-1\right]^{2019}=\left(-1\right)^{2019}=-1\)
2, ta có: \(1^3+2^3+...+n^3=\left(1+2+...+n\right)^2=\left[\frac{n\left(n+1\right)}{2}\right]^2\) (bạn tự cm)
Áp dụng công thức trên ta được n=2016
3, \(x=\frac{\sqrt[3]{17\sqrt{5}-38}\left(\sqrt{5}+2\right)}{\sqrt{5}+\sqrt{14-6\sqrt{5}}}=\frac{\sqrt[3]{\left(\sqrt{5}\right)^3-3.\left(\sqrt{5}\right)^2.2+3\sqrt{5}.2^2-2^3}\left(\sqrt{5}+2\right)}{\sqrt{5}+\sqrt{9-2.3\sqrt{5}+5}}\)
\(=\frac{\sqrt[3]{\left(\sqrt{5}-2\right)^3}\left(\sqrt{5}+2\right)}{\sqrt{5}+\sqrt{\left(3-\sqrt{5}\right)^2}}=\frac{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}{\sqrt{5}+3-\sqrt{5}}=\frac{5-4}{3}=\frac{1}{3}\)
Thay x=1/3 vào A ta được;
\(A=3x^3+8x^2+2=3.\left(\frac{1}{3}\right)^3+8.\left(\frac{1}{3}\right)^2+2=3\)
Bài 4
ÁP DỤNG BĐT CAUCHY
là ra
\(\frac{1}{\sqrt{1^3+2^3}}+\frac{1}{\sqrt{1^3+2^3+3^3}}+...+\frac{1}{\sqrt{1^3+2^3+3^3+...+n^3}}=\frac{2015}{2017}\) (1)
Cần CM: \(1^3+2^3+3^3+...+n^3=\left(1+2+3+...+n\right)^2\) quy nạp nhé bn, trên mạng có nhìu
(1) \(\Leftrightarrow\)\(\frac{1}{\sqrt{\left(1+2\right)^2}}+\frac{1}{\sqrt{\left(1+2+3\right)^2}}+...+\frac{1}{\sqrt{\left(1+2+3+...+n\right)^2}}=\frac{2015}{2017}\)
\(\Leftrightarrow\)\(\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+n}=\frac{2015}{2017}\)
\(\Leftrightarrow\)\(\frac{1}{\frac{2\left(2+1\right)}{2}}+\frac{1}{\frac{3\left(3+1\right)}{2}}+...+\frac{1}{\frac{n\left(n+1\right)}{2}}=\frac{2015}{2017}\)
\(\Leftrightarrow\)\(2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}\right)=\frac{2015}{2017}\)
\(\Leftrightarrow\)\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}\right)=\frac{2015}{2017}\)
\(\Leftrightarrow\)\(2\left(\frac{1}{2}-\frac{1}{n+1}\right)=\frac{2015}{2017}\)
\(\Leftrightarrow\)\(n=2016\)
Giải giúp mik vs đap cần gấp . Cảm ơn mn. Giải cho mik bài 1 cx đc
1/ Rút gọn
A=\(\sqrt{7}-4\sqrt{3}+\sqrt{4}-2\sqrt{3}\)
B=\(\left(2+\frac{5-\sqrt{5}}{\sqrt{5}-1}\right)\) \(\left(2-\frac{5+\sqrt{5}}{\sqrt{5}+1}\right)\)
C=\(\left(\sqrt{3}+1\right)\) \(\left(\frac{\sqrt{14}-6\sqrt{3}}{5+\sqrt{3}}\right)\)
2/Cho P=\(\left(\sqrt{x-\frac{1}{\sqrt{x}}}\right)\):\(\left(\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{1-\sqrt{x}}{x+\sqrt{x}}\right)\)
a/ cmr: P>0, V x >0, x\(\ne\)1
b/Tính GT P khi x\(\frac{2}{2+\sqrt{3}}\)
1 tính
a \(\frac{1}{\sqrt{5-\sqrt{7}}}+\frac{\sqrt{5}}{\sqrt{5+\sqrt{7}}}-1\)
b \(\frac{\sqrt{3}}{\sqrt{3-1}}-\frac{1}{\sqrt{3+1}}-2\)
2 rút gọn biểu thức
C= \(\frac{\sqrt{x}}{\sqrt{x-\sqrt{y}}}-1+\frac{\sqrt{y}}{x-y}\)
giúp mình giải bài này với mình đang cần gấp
a). \(\frac{1}{\sqrt{5-\sqrt{7}}}+\frac{\sqrt{5}}{\sqrt{5+\sqrt{7}}})-1\)
\(\Leftrightarrow\frac{1}{\sqrt{25-\sqrt{49}}}-1\)
\(\Leftrightarrow\frac{1}{\sqrt{25-7}}-1\)
\(\Leftrightarrow\frac{1}{\sqrt{18}}-1\)
\(\Leftrightarrow\frac{1}{3\sqrt{2}}-1\)
ĐẾN ĐÂY BN QUY ĐỒNG LÀ ĐC
mn ơi giải hộ mk con này vs, mk đag gấp quá:
tính:
\(\frac{1+\frac{\sqrt{3}}{2}}{1+\sqrt{1+\frac{\sqrt{3}}{2}}}+\frac{1-\frac{\sqrt{3}}{2}}{1-\sqrt{1-\frac{\sqrt{3}}{2}}}\)
thank mn nhìu
\(=\frac{1+\frac{\sqrt{3}}{2}}{1+\sqrt{\left(\sqrt{0.75}+\sqrt{0.25}\right)^2}}+\frac{1-\frac{\sqrt{3}}{2}}{1-\sqrt{\left(\sqrt{0.75}-\sqrt{0.25}\right)^2}}\)
\(=\frac{1+\frac{\sqrt{3}}{2}}{1+\sqrt{0.75}+\sqrt{0.25}}+\frac{1-\frac{\sqrt{3}}{2}}{1-\sqrt{0.75}+\sqrt{0.25}}\)
TRỤC CĂN THỨC Ở MẪU TA ĐƯỢC
\(=\frac{9+4\sqrt{3}}{33}+\frac{3-\sqrt{3}}{6}\)
Quy đồng ta được
\(=\frac{17-\sqrt{3}}{22}\)
TICK CHO MÌNH NHA BẠN
giúp mk vs nhanh nha
cho biểu thức \(P=\left(\frac{\sqrt{x-1}}{3+\sqrt{x-1}}+\frac{x+8}{10-x}\right):\left(\frac{3\sqrt{x-1}+1}{x-3\sqrt{x-1}-1}-\frac{1}{\sqrt{x-1}}\right)\)
rút gọn P
tính giá trị của P khi \(x=\sqrt[4]{\frac{3+2\sqrt{2}}{3-2\sqrt{2}}}-\sqrt[4]{\frac{3-2\sqrt{2}}{3+2\sqrt{2}}}\)