Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khánh Minh Nguyễn
Xem chi tiết
Phu Dang Gia
18 tháng 8 2020 lúc 8:38

Đặt x=a-2,ta có : \(P=\frac{\sqrt{x}-2}{3}.\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{9-x}\right):\left(\frac{3\sqrt{x}+1}{x-3\sqrt{x}}-\frac{1}{\sqrt{x}}\right)\)

\(=\frac{\sqrt{x}-2}{3}.\left(\frac{\sqrt{x}\left(3-\sqrt{x}\right)+x+9}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\right):\left(\frac{3\sqrt{x}+1-\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-3\right)}\right)\)

\(=\frac{\sqrt{x}-2}{3}.\left(\frac{3\left(\sqrt{x}+3\right)}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\right):\left(\frac{2\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}-3\right)}\right)\)

\(=\frac{\sqrt{x}-2}{3}.\frac{3}{3-\sqrt{x}}.\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\left(\sqrt{x}+2\right)}\)

\(=\frac{-\sqrt{x}\left(\sqrt{x}-2\right)}{2\left(\sqrt{x}+2\right)}\)

Khách vãng lai đã xóa
Nguyễn Tuấn Minh
Xem chi tiết
nguyen thao
Xem chi tiết
Trí Tiên亗
15 tháng 8 2020 lúc 18:49

Bài 2 :

b) \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=2\) (1)

ĐKXĐ : \(x\ge1\)

Pt(1) tương đương :

\(\sqrt{\left(x-1\right)+2\sqrt{x-1}+1}+\sqrt{\left(x-1\right)-2\sqrt{x-1}+1}=2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\)

\(\Leftrightarrow\sqrt{x-1}+1+\left|\sqrt{x-1}-1\right|=2\) (*)

Xét \(x\ge2\Rightarrow\sqrt{x-1}-1\ge0\)

\(\Rightarrow\left|\sqrt{x-1}-1\right|=\sqrt{x-1}-1\)

Khi đó pt (*) trở thành :

\(\sqrt{x-1}+1+\sqrt{x-1}-1=2\)

\(\Leftrightarrow2\sqrt{x-1}=2\)

\(\Leftrightarrow\sqrt{x-1}=1\)

\(\Leftrightarrow x-1=1\)

\(\Leftrightarrow x=2\) ( Thỏa mãn )

Xét \(1\le x< 2\) thì \(x\ge2\Rightarrow\sqrt{x-1}-1< 0\)

Nên : \(\left|\sqrt{x-1}-1\right|=1-\sqrt{x-1}\). Khi đó pt (*) trở thành :

\(\sqrt{x-1}+1+1-\sqrt{x-1}=2\)

\(\Leftrightarrow2=2\) ( Luôn đúng )

Vậy tập nghiệm của phương trình đã cho là \(S=\left\{x|1\le x\le2\right\}\)

Khách vãng lai đã xóa
Trí Tiên亗
15 tháng 8 2020 lúc 18:57

Bài 1 : 

a) ĐKXĐ : \(-1\le a\le1\)

Ta có : \(Q=\left(\frac{3}{\sqrt{1+a}}+\sqrt{1-a}\right):\left(\frac{3}{\sqrt{1-a^2}}\right)\)

\(=\left(\frac{3+\sqrt{1-a}.\sqrt{1+a}}{\sqrt{1+a}}\right)\cdot\frac{\sqrt{1-a^2}}{3}\)

\(=\frac{3+\sqrt{\left(1-a\right)\left(1+a\right)}}{\sqrt{1+a}}\cdot\frac{\sqrt{\left(1-a\right)\left(1+a\right)}}{3}\)

\(=\frac{\left(3+\sqrt{1-a^2}\right).\sqrt{1-a}}{3}\)

Vậy \(Q=\frac{\left(3+\sqrt{1-a^2}\right).\sqrt{1-a}}{3}\) với \(-1\le a\le1\)

b) Với \(a=\frac{\sqrt{3}}{2}\) thỏa mãn ĐKXĐ \(-1\le a\le1\)nên ta có :

\(\hept{\begin{cases}1-a=1-\frac{\sqrt{3}}{2}=\frac{4-2\sqrt{3}}{4}=\frac{\left(\sqrt{3}-1\right)^2}{2^2}\\1-a^2=1-\frac{3}{4}=\frac{1}{4}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\sqrt{1-a}=\sqrt{\frac{\left(\sqrt{3}-1\right)^2}{2^2}}=\left|\frac{\sqrt{3}-1}{2}\right|=\frac{\sqrt{3}-1}{2}\\\sqrt{1-a^2}=\frac{1}{2}\end{cases}}\)

Do đó : \(Q=\frac{\left(3+\frac{1}{2}\right)\cdot\frac{\sqrt{3}-1}{2}}{3}=\frac{5\sqrt{3}-5}{12}\)

Khách vãng lai đã xóa
nguyễn viết hạ long
Xem chi tiết
Luffy Mũ Rơm
25 tháng 9 2016 lúc 20:56

Tiếc quá 

mình chưa học đến

bik thì giúp cho

Trần Huệ
Xem chi tiết
Cô gái thất thường (Ánh...
Xem chi tiết
ST
25 tháng 7 2019 lúc 22:00

1, \(x^3=\left(7+\sqrt{\frac{49}{8}}\right)+\left(7-\sqrt{\frac{49}{8}}\right)+3x\sqrt[3]{\left(7+\sqrt{\frac{49}{8}}\right)\left(7-\sqrt{\frac{49}{8}}\right)}\)

\(=14+3x\cdot\frac{7}{2}=14+\frac{21x}{2}\)

\(\Leftrightarrow x^3-\frac{21}{2}x-14=0\)

Ta có: \(f\left(x\right)=\left(2x^3-21-29\right)^{2019}=\left[2\left(x^3-\frac{21}{2}x-14\right)-1\right]^{2019}=\left(-1\right)^{2019}=-1\)

2, ta có: \(1^3+2^3+...+n^3=\left(1+2+...+n\right)^2=\left[\frac{n\left(n+1\right)}{2}\right]^2\) (bạn tự cm)

Áp dụng công thức trên ta được n=2016

3, \(x=\frac{\sqrt[3]{17\sqrt{5}-38}\left(\sqrt{5}+2\right)}{\sqrt{5}+\sqrt{14-6\sqrt{5}}}=\frac{\sqrt[3]{\left(\sqrt{5}\right)^3-3.\left(\sqrt{5}\right)^2.2+3\sqrt{5}.2^2-2^3}\left(\sqrt{5}+2\right)}{\sqrt{5}+\sqrt{9-2.3\sqrt{5}+5}}\)

\(=\frac{\sqrt[3]{\left(\sqrt{5}-2\right)^3}\left(\sqrt{5}+2\right)}{\sqrt{5}+\sqrt{\left(3-\sqrt{5}\right)^2}}=\frac{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}{\sqrt{5}+3-\sqrt{5}}=\frac{5-4}{3}=\frac{1}{3}\)

Thay x=1/3 vào A ta được;

\(A=3x^3+8x^2+2=3.\left(\frac{1}{3}\right)^3+8.\left(\frac{1}{3}\right)^2+2=3\)

Bài 4

ÁP DỤNG BĐT CAUCHY 

là ra

Phùng Minh Quân
26 tháng 7 2019 lúc 9:13

\(\frac{1}{\sqrt{1^3+2^3}}+\frac{1}{\sqrt{1^3+2^3+3^3}}+...+\frac{1}{\sqrt{1^3+2^3+3^3+...+n^3}}=\frac{2015}{2017}\) (1) 

Cần CM: \(1^3+2^3+3^3+...+n^3=\left(1+2+3+...+n\right)^2\) quy nạp nhé bn, trên mạng có nhìu 

(1) \(\Leftrightarrow\)\(\frac{1}{\sqrt{\left(1+2\right)^2}}+\frac{1}{\sqrt{\left(1+2+3\right)^2}}+...+\frac{1}{\sqrt{\left(1+2+3+...+n\right)^2}}=\frac{2015}{2017}\)

\(\Leftrightarrow\)\(\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+n}=\frac{2015}{2017}\)

\(\Leftrightarrow\)\(\frac{1}{\frac{2\left(2+1\right)}{2}}+\frac{1}{\frac{3\left(3+1\right)}{2}}+...+\frac{1}{\frac{n\left(n+1\right)}{2}}=\frac{2015}{2017}\)

\(\Leftrightarrow\)\(2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}\right)=\frac{2015}{2017}\)

\(\Leftrightarrow\)\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}\right)=\frac{2015}{2017}\)

\(\Leftrightarrow\)\(2\left(\frac{1}{2}-\frac{1}{n+1}\right)=\frac{2015}{2017}\)

\(\Leftrightarrow\)\(n=2016\)

nguyen thao
Xem chi tiết
Duyên Lê
Xem chi tiết
Bùi Vương TP (Hacker Nin...
20 tháng 9 2018 lúc 15:57

a).  \(\frac{1}{\sqrt{5-\sqrt{7}}}+\frac{\sqrt{5}}{\sqrt{5+\sqrt{7}}})-1\)

\(\Leftrightarrow\frac{1}{\sqrt{25-\sqrt{49}}}-1\)

\(\Leftrightarrow\frac{1}{\sqrt{25-7}}-1\)

\(\Leftrightarrow\frac{1}{\sqrt{18}}-1\)

\(\Leftrightarrow\frac{1}{3\sqrt{2}}-1\) 

ĐẾN ĐÂY BN QUY ĐỒNG LÀ ĐC

Nguyễn Bảo Trâm
Xem chi tiết
Tô Hồng Nhân
24 tháng 9 2015 lúc 17:59

\(=\frac{1+\frac{\sqrt{3}}{2}}{1+\sqrt{\left(\sqrt{0.75}+\sqrt{0.25}\right)^2}}+\frac{1-\frac{\sqrt{3}}{2}}{1-\sqrt{\left(\sqrt{0.75}-\sqrt{0.25}\right)^2}}\)

\(=\frac{1+\frac{\sqrt{3}}{2}}{1+\sqrt{0.75}+\sqrt{0.25}}+\frac{1-\frac{\sqrt{3}}{2}}{1-\sqrt{0.75}+\sqrt{0.25}}\)

TRỤC CĂN THỨC Ở MẪU TA ĐƯỢC

\(=\frac{9+4\sqrt{3}}{33}+\frac{3-\sqrt{3}}{6}\)

Quy đồng ta được

\(=\frac{17-\sqrt{3}}{22}\)

TICK CHO MÌNH NHA BẠN

Phan Văn Hiếu
Xem chi tiết