Tim x,y \(\in Z\) t/m :2y2=3-/x+4/
tim x,y,z biet x/2=y/3=z/5
va x2-2y2+z2=44
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\left(k\ne0\right)\)
\(\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)
Mà \(x^2-2y^2+z^2=44\)
\(\Rightarrow\left(2k\right)^2+2\left(3k\right)^2+\left(5k\right)^2=44\)
\(\Leftrightarrow4k^2-18k^2+25k^2=44\)
\(\Leftrightarrow k^2\left(4-18+25\right)=44\)
\(\Leftrightarrow k^2.11=44\)
\(\Leftrightarrow k^2=4\)
\(\Leftrightarrow\orbr{\begin{cases}k=2\\k=-2\end{cases}}\)
+) Với \(k=2\)thì \(\hept{\begin{cases}x=2k=4\\y=3k=6\\z=5k=10\end{cases}}\)
+) Với \(k=-2\)thì \(\hept{\begin{cases}x=2k=-4\\y=3k=-6\\z=5k=-10\end{cases}}\)
Vậy ...
Tìm x, y, z biết: x : y : z = 3 : 4 : 5 và 2x
2 + 2y
2 − 3z
2= -100
Đoạn:
2x
2 + 2y
2 − 3z
2= -100 là như thế nào bạn nhỉ?
Bạn viết lại đề để mọi người hiểu hơn nhé.
Cho x,y,z là các số thực thoả mãn: (x+y)(x+z)(y+z)=144.
Tìm giá trị nhỏ nhất của :
P = 5(x2 + y2) + 2y2
có vấn đề j với mấy lời giải kia vậy ??? hôm qua bn đã hỏi nó r` mà !
Mk cảm thấy có vấn de khi áp dụng am-gm mà chưa biết dấu
Tìm các số x; y; z biết:
a) x, y, z tỉ lệ với các số 4; 7; 3 và x + y + z = - 42
b) x, y, z tỉ lệ với các số 5; - 3; 8 và 3x -5y -2z = 42
c) x : y : z = 3 : 4 : 5 ; 2 x 2 + 2 y 2 − 3 z 2 = − 100
Tìm ba số x,y,z thỏa mãn \(\dfrac{x}{4}=\dfrac{y}{4}=\dfrac{z}{5}\)và 2x2+2y2-3z2=-100
\(\dfrac{x}{4}=\dfrac{y}{4}=\dfrac{z}{5}=>\dfrac{2x^2}{32}=\dfrac{2y^2}{32}=\dfrac{3z^2}{75}\)
AD t/c của dãy tỉ số bằng nhâu ta có
\(\dfrac{2x^2}{32}=\dfrac{2y^2}{32}=\dfrac{3z^2}{75}=\dfrac{2x^2+2y^2-3z^2}{32+32-75}=\dfrac{-100}{-11}=\dfrac{100}{11}\)
\(=>\left[{}\begin{matrix}x=\dfrac{400}{11}\\y=\dfrac{400}{11}\\z=\dfrac{500}{11}\end{matrix}\right.\)
biet t/x = 4/3; y/z = 3/2; z/x = 1/6. Tim t/y
Bài 12: Tìm nghiệm của các đa thức sau:
a/ A(x) = 2x2 - 4x b/ B(y) = 3y3 + 4y - 2y2 - 3y3 - 5 + 2y2 - 3
c/ C(t) = 3t2 - 5 + t - 1 – t d/ M(x) = 5x2 - 4 - 3x2 + 2x + 5 - 2x e/ N(x) = 2x2 - 8
a) cho A(x) = 0
\(=>2x^2-4x=0\)
\(x\left(2-4x\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\4x=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\end{matrix}\right.\)
b)\(B\left(y\right)=4y-8\)
cho B(y) = 0
\(4y-8=0\Rightarrow4y=8\Rightarrow y=2\)
c)\(C\left(t\right)=3t^2-6\)
cho C(t) = 0
\(=>3t^2-6=0=>3t^2=6=>t^2=2\left[{}\begin{matrix}t=\sqrt{2}\\t=-\sqrt{2}\end{matrix}\right.\)
d)\(M\left(x\right)=2x^2+1\)
cho M(x) = 0
\(2x^2+1=0\Rightarrow2x^2=-1\Rightarrow x^2=-\dfrac{1}{2}\left(vl\right)\)
vậy M(x) vô nghiệm
e) cho N(x) = 0
\(2x^2-8=0\)
\(2\left(x^2-4\right)=0\)
\(2\left(x^2+2x-2x-4\right)=0\)
\(2\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
`e, N(x) = 2x^2 - 8 = 2( x^2 - 4 ) = 2( x-2 )( x + 2 )`
Xét `N(x)=0`
`=> 2(x-2)(x+2)=0`
`=>(x-2)(x+2)=0`
`=>x-2=0` hoặc `x+2=0`
`=>x=2` hoặc `x=-2`
Vậy `x in { +-2 }` là nghiệm của `N(x)`
Cho x,y,z là các số thực thỏa mãn:
-2≤x,y,z≤5 và x+2y+3z≤9. Tìm GTLN của bt:
M= x2 +2y2 +3z2
tim cac so m,n,p thoa man : m+n+p+8=2canm-1 + 4cann-2 +6canp-3
tim cac so x,y,z thoa man :canx+cany-1 +canz-2 = 1/2(x+y+z)
tim cac so x,y,z thoa man :x+y+z+4=2canx-2 +4cany-3+6canz-5