Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bảo Anh
Xem chi tiết
Sách Giáo Khoa
9 tháng 1 2020 lúc 16:15

Áp dụng bất đẳng thức Cô-si cho hai số dương \(\frac{x}{y}\)\(\frac{y}{x}\). Dấu bằng xảy ra khi và chỉ khi \(\frac{x}{y}=\frac{y}{x}\) hay \(x=y\)

Khách vãng lai đã xóa
tthnew
9 tháng 1 2020 lúc 16:34

Cách 2:

\(VT-VP=\frac{x}{y}+\frac{y}{x}-2=\frac{\left(x-y\right)^2}{xy}\ge0\forall x,y>0\)

Đẳng thức xảy ra khi x = y

P/s: Vì câu này trùng với Câu hỏi của Bảo Anh, nội dung y hệt nên mình xóa bớt 1 câu nhé, tránh tình trạng loãng diễn đàn! Thân!

Khách vãng lai đã xóa
Trần Mai Quyên
9 tháng 1 2020 lúc 20:48

Ta có :\(\frac{x}{y}+\frac{y}{x}-2=\frac{\left(x-y\right)^2}{x.y}\ge x,y>0\)

Áp dụng bất đẳng thức Cô-si cho hai số dương, ta lại có : \(\frac{x}{y}=\frac{y}{x}\)

\(\Rightarrow x=y\) (đpcm)

CHÚC BẠN HỌC TỐT NHA !!!thanghoa

Khách vãng lai đã xóa
Tô Hoài Dung
Xem chi tiết
Thắng Nguyễn
13 tháng 10 2016 lúc 18:17

1)đề thiếu

2)\(\frac{x^2+y^2}{x-y}=\frac{\left(x^2-2xy+y^2\right)+2xy}{x-y}\)\(=\frac{\left(x-y\right)^2+2}{x-y}=x-y+\frac{2}{x-y}\)

\(x>y\Rightarrow x-y>0\).Áp dụng Bđt Côsi ta có:

\(\left(x-y\right)+\frac{2}{x-y}\ge2\sqrt{\left(x-y\right)\cdot\frac{2}{x-y}}=2\sqrt{2}\)

Đpcm

3)\(a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow a+b-2\sqrt{ab}\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)

Đpcm

minh anh minh anh
13 tháng 10 2016 lúc 15:21

P OI cai nay dung bat dang thuc co si do

Tô Hoài Dung
13 tháng 10 2016 lúc 18:06

k biết làm mà!! )))

khoimzx
Xem chi tiết
Bình Minh Trần
Xem chi tiết
Girl
13 tháng 10 2018 lúc 19:38

\(\sqrt{x\left(y+z\right)}\le\frac{x+y+z}{2}\)( Cauchy)

\(\Rightarrow\sqrt{\frac{x}{y+z}}=\frac{x}{\sqrt{x\left(y+z\right)}}\le\frac{x}{\frac{x+y+z}{2}}=\frac{2x}{x+y+z}\)

Chứng minh tương tự:

\(\sqrt{\frac{y}{x+z}}\le\frac{2y}{x+y+z};\sqrt{\frac{z}{x+y}}\le\frac{2z}{x+y+z}\)

Cộng theo vế suy ra đocn. Dấu "=" ko xảy ra

Nguyễn Quốc Vũ Hoàng
Xem chi tiết
Kiệt Nguyễn
17 tháng 7 2020 lúc 20:08

\(BĐT\Leftrightarrow\frac{2-2xy}{2+x^2+y^2}+\frac{2x^2-2y}{1+2x^2+y^2}+\frac{2y^2-2x}{1+x^2+2y^2}\ge0\)

\(\Leftrightarrow1-\frac{2-2xy}{2+x^2+y^2}+1-\frac{2x^2-2y}{1+2x^2+y^2}+1-\frac{2y^2-2x}{1+x^2+2y^2}\le3\)

\(\Leftrightarrow\frac{\left(x+y\right)^2}{2+x^2+y^2}+\frac{\left(y+1\right)^2}{1+2x^2+y^2}+\frac{\left(x+1\right)^2}{1+x^2+2y^2}\le3\)(*)

Theo bất đẳng thức Bunyakovsky dạng phân thức: \(\frac{\left(x+y\right)^2}{2+x^2+y^2}\le\frac{x^2}{1+x^2}+\frac{y^2}{1+y^2}\)(1); \(\frac{\left(y+1\right)^2}{1+2x^2+y^2}\le\frac{y^2}{x^2+y^2}+\frac{1}{x^2+1}\)(2); \(\frac{\left(x+1\right)^2}{1+x^2+2y^2}\le\frac{x^2}{x^2+y^2}+\frac{1}{y^2+1}\)(3)

Cộng theo vế của 3 BĐT (1), (2), (3), ta được: \(\frac{\left(x+y\right)^2}{2+x^2+y^2}+\frac{\left(y+1\right)^2}{1+2x^2+y^2}+\frac{\left(x+1\right)^2}{1+x^2+2y^2}\le\)\(\left(\frac{x^2}{x^2+y^2}+\frac{y^2}{x^2+y^2}\right)+\left(\frac{1}{y^2+1}+\frac{y^2}{y^2+1}\right)+\left(\frac{1}{x^2+1}+\frac{x^2}{x^2+1}\right)=3\)

Như vậy (*) đúng

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi x = y = 1

Khách vãng lai đã xóa
Tran Le Khanh Linh
17 tháng 7 2020 lúc 20:04

\(\frac{1-xy}{2+x^2+y^2}+\frac{x^2-y^2}{1+2x^2+y^2}+\frac{y^2-x}{1+x^2+2y^2}\ge0\)

\(\Leftrightarrow\frac{1-xy+3x^2-2y^2-2y^2+x}{\left(1+x^2+y^2\right)}\ge0\)

\(\Leftrightarrow\frac{2\left(1+x^2+y^2\right)+x^2}{1+x^2+y^2}\ge0\)

Vì x2 và y2 >0

\(\Rightarrow2+\frac{x^2}{1+x^2+y^2}\ge0\)(luôn đúng)

Khách vãng lai đã xóa
tth_new
18 tháng 7 2020 lúc 10:25

Bạn nhatt quynhh xem lại bài bạn đi nha. Phô diễn kỹ thuật tí:

Bài này đúng với mọi x, y là các số thực. Thật vậy\(,\)

Bất đẳng thức đã cho tương đương với: (vô thống kê hỏi đáp mình xem LaTex nha, tại olm bị lỗi LaTex)

${\frac {1}{378}}\, \left( x+y-2 \right) ^{4} \left( 29\,{x}^{2}+29\,{y
}^{2}+20 \right) \\+{\frac {1}{378}}\, \left( y+1-2\,x \right) ^{4}
 \left( 20\,{x}^{2}+29\,{y}^{2}+29 \right) +{\frac {1}{378}}\, \left( 
1+x-2\,y \right) ^{4} \left( 29\,{x}^{2}+20\,{y}^{2}+29 \right) \\+\frac{1}{14}
\, \left( {x}^{2}y+x{y}^{2}+{x}^{2}-6\,xy+{y}^{2}+x+y \right) ^{2} \geqslant 0$

Khách vãng lai đã xóa
Tô Hoài Dung
Xem chi tiết
Thiên An
19 tháng 5 2017 lúc 8:17

1/ Sửa đề:   \(x+y+z=\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)

\(\Leftrightarrow\)   \(\left(x+y\right)+\left(y+z\right)+\left(z+x\right)-2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=0\)

\(\Leftrightarrow\)   \(\left(x-2\sqrt{xy}+y\right)+\left(y-2\sqrt{yz}+z\right)+\left(z-2\sqrt{zx}+x\right)=0\)

\(\Leftrightarrow\)   \(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2=0\)

Với mọi x, y, z ta luôn có:   \(\left(\sqrt{x}-\sqrt{y}\right)^2\ge0;\)   \(\left(\sqrt{y}-\sqrt{z}\right)^2\ge0;\)   \(\left(\sqrt{z}-\sqrt{x}\right)^2\ge0;\)

\(\Rightarrow\)   \(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2\ge0\)

Do đó dấu "=" xảy ra    \(\Leftrightarrow\)    \(\hept{\begin{cases}\left(\sqrt{x}-\sqrt{y}\right)^2=0\\\left(\sqrt{y}-\sqrt{z}\right)^2=0\\\left(\sqrt{z}-\sqrt{x}\right)^2=0\end{cases}}\)   \(\Leftrightarrow\)    \(\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}}\)    \(\Leftrightarrow\)    x = y = z

3/ Đây là BĐT Cô-si cho 2 số dương a và b, ta biến đổi tương đương để chứng minh

\(a+b\ge2\sqrt{ab}\)   \(\Leftrightarrow\)   \(\left(a+b\right)^2\ge\left(2\sqrt{ab}\right)^2\)   \(\Leftrightarrow\)   \(\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\)   \(a^2+b^2+2ab-4ab\ge0\)    \(\Leftrightarrow\)    \(a^2-2ab+b^2\ge0\)   \(\Leftrightarrow\)   \(\left(a-b\right)^2\ge0\)

Đẳng thức xảy ra khi và chỉ khi a = b

2/ Vì x > y và xy = 1 áp dụng BĐT Cô-si ta được:

\(\frac{x^2+y^2}{x-y}=\frac{\left(x-y\right)^2+2xy}{x-y}=\left(x-y\right)+\frac{1}{x-y}\ge2\sqrt{\left(x-y\right).\frac{1}{x-y}}=2\)

Đẳng thức xảy ra   \(\Leftrightarrow\)   \(\hept{\begin{cases}x>y\\xy=1\\x-y=\frac{1}{x-y}\end{cases}}\)   \(\Leftrightarrow\)   \(\hept{\begin{cases}x=\frac{1+\sqrt{5}}{2}\\y=\frac{-1+\sqrt{5}}{2}\end{cases}}\)

nguyen van giang
Xem chi tiết
Thắng Nguyễn
18 tháng 9 2016 lúc 23:07

Bài 1: \(T=\sqrt{\frac{x^3}{x^3+8y^3}}+\sqrt{\frac{4y^3}{y^3+\left(x+y\right)^3}}\)

\(=\frac{x^2}{\sqrt{x\left(x^3+8y^3\right)}}+\frac{2y^2}{\sqrt{y\left[y^3+\left(x+y\right)^3\right]}}\)

\(=\frac{x^2}{\sqrt{\left(x^2+2xy\right)\left(x^2-2xy+4y^2\right)}}+\frac{2y^2}{\sqrt{\left(xy+2y^2\right)\left(x^2+xy+y^2\right)}}\)

\(\ge\frac{2x^2}{2x^2+4y^2}+\frac{4y^2}{2y^2+\left(x+y\right)^2}\ge\frac{2x^2}{2x^2+4y^2}+\frac{4y^2}{2x^2+4y^2}=1\)

\(\Rightarrow T\ge1\)

Bài 2:

[Toán 10] Bất đẳng thức | Page 5 | HOCMAI Forum - Cộng đồng học sinh Việt Nam

Trần Thành An
Xem chi tiết
Ngô Ngọc Khánh
10 tháng 12 2015 lúc 19:11

Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)( Với x,y >0)

Nhân cả 2 vế với 2 rồi áp dụng. Ra ngay

Admin (a@olm.vn)
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
22 tháng 3 2021 lúc 17:27

*Chứng minh bằng biến đổi tương đương

\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

<=> \(\frac{x+y}{xy}-\frac{4}{x+y}\ge0\)

<=> \(\frac{\left(x+y\right)^2}{xy\left(x+y\right)}-\frac{4xy}{xy\left(x+y\right)}\ge0\)

<=> \(\frac{x^2+2xy+y^2-4xy}{xy\left(x+y\right)}\ge0\)

<=> \(\frac{\left(x-y\right)^2}{xy\left(x+y\right)}\ge0\)( đúng vì x,y > 0 )

Đẳng thức xảy ra <=> x = y 

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
22 tháng 3 2021 lúc 17:28

*Chứng minh bằng bất đẳng thức

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có ngay :

\(\frac{1}{x}+\frac{1}{y}\ge\frac{\left(1+1\right)^2}{x+y}=\frac{4}{x+y}\left(đpcm\right)\)

Đẳng thức xảy ra <=> x = y 

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
22 tháng 3 2021 lúc 17:33

*Chứng minh bằng bất đẳng thức

Áp dụng bất đẳng thức AM-GM ta có :

\(x+y\ge2\sqrt{xy}\) ; \(\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{xy}}\)

Nhân vế với vế => \(\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\ge4\)=> \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)(đpcm)

Đẳng thức xảy ra <=> x=y

Khách vãng lai đã xóa