\(x+\sqrt{5+\sqrt{x-1}}=6\)
mội ng giải hộ mk vs! cảm ơn trc nhé!
ai có thể giúp mình giải bài này vs đc không mình đang cần rất gấp (làm chi tiết hộ mình nhé, xin cảm ơn)
Bài 4:
a, \(\sqrt{3x+4}-\sqrt{2x+1}=\sqrt{x+3}\)
b, \(\sqrt{2x-5}+\sqrt{x+2}=\sqrt{2x+1}\)
c, \(\sqrt{x+4}-\sqrt{1-x}=\sqrt{1-2x}\)
d,\(\sqrt{x+9}=5-\sqrt{2x+4}\)
Bài 5:
a, \(\sqrt{x+4\sqrt{x}+4}=5x+2\)
b, \(\sqrt{x^2-2x+1}+\sqrt{x^2+4x+4}=4\)
c, \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=2\)
d,\(\sqrt{x-2+\sqrt{2x-5}}+\sqrt{x+2+3\sqrt{2x-5}}=7\sqrt{2}\)
Ví Dụ 1:
a, \(\sqrt{2x-1}=\sqrt{2}-1\)
b, \(\sqrt{x+5}=3-\sqrt{2}\)
c, \(\sqrt{3x^2}-\sqrt{12}=0\)
d, \(\sqrt{2}\left(x-1\right)-\sqrt{50}=0\)
Vd1:
d) Ta có: \(\sqrt{2}\left(x-1\right)-\sqrt{50}=0\)
\(\Leftrightarrow\sqrt{2}\left(x-1-5\right)=0\)
\(\Leftrightarrow x=6\)
Tìm min các biểu thức sau và giá trị x A=\(\dfrac{1-\sqrt{x}+x}{\sqrt{x}}\)
vs x>0
giải giúp mk bài này vs mk cần gấp lắm cảm ơn trc nah :)
\(A=\dfrac{1-\sqrt{x}+x}{\sqrt{x}}\\ =\dfrac{\left(1-\sqrt{x}+x\right)\sqrt{x}}{x}\\ =\dfrac{\sqrt{x}-x+x\sqrt{x}}{x}\)
lm tiếp...
(x-1).(x+2).(-x-3)=0
lm hộ mk vs nhé! mk bí quá!~
Cảm ơn trc nha
Bài này có 2 trường hợp:
TH1: x-1 = 0 suy ra x = 1
TH2: x+2 = 0 suy ra x = -2
Vậy x = 1 hoặc -2
Nhớ k cho mình nhé!
cậu phải tự suy nghĩ đi chứ, dễ lắm, suy nghĩ và làm đi nhé!
Ta có (x-1)=0; (x+2)=0;(-x+3)=0 rồi giải như bình thường nha bn
X+2=0 => X=-2;X-1=0 => x=1 và -x+3 => x=3.Thấy đúng thì k mik nha
ai có thể giúp mình giải bài này với đc không (giải chi tiết hộ mình nhé,xin cảm ơn)
Bài 4:
a, \(\sqrt{3x+4}-\sqrt{2x+1}=\sqrt{x+3}\)
b, \(\sqrt{2x-5}+\sqrt{x+2}=\sqrt{2x+1}\)
c, \(\sqrt{x+4}-\sqrt{1-x}=\sqrt{1-2x}\)
d, \(\sqrt{x+9}=5-\sqrt{2x+4}\)
Bài 5:
a, \(\sqrt{x+4\sqrt{x}+4}=5x+2\)
b, \(\sqrt{x^2-2x+1}+\sqrt{x^2+4x+4}=4\)
VD1 :
a,\(\sqrt{2x-1}=\sqrt{2}-1\)
b,\(\sqrt{x+5}=3-\sqrt{2}\)
c,\(\sqrt{3}x^2-\sqrt{12}=0\)
d, \(\sqrt{2}\left(x-1\right)-\sqrt{50}=0\)
VD2 :
a, \(\sqrt{2x+5}=\sqrt{1-x}\)
b, \(\sqrt{x^2-x}=\sqrt{3-x}\)
c, \(\sqrt{2x^2-3}=\sqrt{4x-3}\)
Bài 4:
a, \(\sqrt{3x+4}-\sqrt{2x+1}=\sqrt{x+3}\) (ĐK: \(x\ge\dfrac{-1}{2}\))
\(\Rightarrow\) \(\left(\sqrt{3x+4}-\sqrt{2x+1}\right)^2\) = x + 3
\(\Leftrightarrow\) \(3x+4+2x+1-2\sqrt{\left(3x+4\right)\left(2x+1\right)}=x+3\)
\(\Leftrightarrow\) \(4x+2=2\sqrt{6x^2+11x+4}\)
\(\Leftrightarrow\) \(2x+1=\sqrt{6x^2+11x+4}\)
\(\Rightarrow\) \(4x^2+4x+1=6x^2+11x+4\)
\(\Leftrightarrow\) \(2x^2+7x+3=0\)
\(\Delta=7^2-4.2.3=25\); \(\sqrt{\Delta}=5\)
Vì \(\Delta\) > 0; theo hệ thức Vi-ét ta có:
\(x_1=\dfrac{-7+5}{4}=\dfrac{-1}{2}\)(TM); \(x_2=\dfrac{-7-5}{4}=-3\) (KTM)
Vậy ...
Các phần còn lại bạn làm tương tự nha, phần d bạn chuyển \(-\sqrt{2x+4}\) sang vế trái rồi bình phương 2 vế như bình thường là được
Bài 5:
a, \(\sqrt{x+4\sqrt{x}+4}=5x+2\)
\(\Leftrightarrow\) \(\sqrt{\left(\sqrt{x}+2\right)^2}=5x+2\)
\(\Rightarrow\) \(\sqrt{x}+2=5x+2\)
\(\Leftrightarrow\) \(5x-\sqrt{x}=0\)
\(\Leftrightarrow\) \(\sqrt{x}\left(5\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}\sqrt{x}=0\\5\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{25}\end{matrix}\right.\)
Vậy ...
Phần b cũng là hằng đẳng thức thôi nha \(\sqrt{x^2-2x+1}=\sqrt{\left(x-1\right)^2}=x-1\); \(\sqrt{x^2+4x+4}=\sqrt{\left(x+2\right)^2}=x+2\) rồi giải như bình thường là xong nha!
VD1:
a, \(\sqrt{2x-1}=\sqrt{2}-1\) (x \(\ge\) \(\dfrac{1}{2}\))
\(\Leftrightarrow\) \(2x-1=\left(\sqrt{2}-1\right)^2\) (Bình phương 2 vế)
\(\Leftrightarrow\) \(2x-1=2-2\sqrt{2}+1\)
\(\Leftrightarrow\) \(2x=4-2\sqrt{2}\)
\(\Leftrightarrow\) \(x=2-\sqrt{2}\) (TM)
Vậy ...
Phần b tương tự nha
c, \(\sqrt{3}x^2-\sqrt{12}=0\)
\(\Leftrightarrow\) \(\sqrt{3}x^2=\sqrt{12}\)
\(\Leftrightarrow\) \(x^2=2\)
\(\Leftrightarrow\) \(x=\pm\sqrt{2}\)
Vậy ...
d, \(\sqrt{2}\left(x-1\right)-\sqrt{50}=0\)
\(\Leftrightarrow\) \(\sqrt{2}\left(x-1\right)=\sqrt{50}\)
\(\Leftrightarrow\) \(x-1=5\)
\(\Leftrightarrow\) \(x=6\)
Vậy ...
VD2:
Phần a dễ r nha (Bình phương 2 vế rồi tìm x như bình thường)
b, \(\sqrt{x^2-x}=\sqrt{3-x}\) (\(x\le3\); \(x^2\ge x\))
\(\Leftrightarrow\) \(x^2-x=3-x\) (Bình phương 2 vế)
\(\Leftrightarrow\) \(x^2=3\)
\(\Leftrightarrow\) \(x=\pm\sqrt{3}\) (TM)
Vậy ...
c, \(\sqrt{2x^2-3}=\sqrt{4x-3}\) (x \(\ge\) \(\dfrac{\sqrt{3}}{2}\))
\(\Leftrightarrow\) \(2x^2-3=4x-3\) (Bình phương 2 vế)
\(\Leftrightarrow\) \(2x^2-4x=0\)
\(\Leftrightarrow\) \(2x\left(x-2\right)=0\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}2x=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=0\left(KTM\right)\\x=2\left(TM\right)\end{matrix}\right.\)
Vậy ...
Chúc bn học tốt! (Có gì không biết cứ hỏi mình nha!)
giải pt:
\(\sqrt{2x+1}\) _\(\sqrt{5-x}\) + x - 6 = 0
ai giúp mk vs ạ, mk cảm ơn
\(\sqrt{2x+1}-\sqrt{5-x}+x-6=0\)
\(\Leftrightarrow\left(\sqrt{2x+1}-3\right)+\left(1-\sqrt{5-x}\right)+x-4=0\)
\(\Leftrightarrow\frac{2\left(x-4\right)}{\sqrt{2x+1}+3}+\frac{x-4}{\sqrt{5-x}+1}+x-4=0\)
\(\Leftrightarrow\left(x-4\right)\left(\frac{2}{\sqrt{2x+1}+3}+\frac{1}{\sqrt{5-x}+1}+1\right)=0\)
\(\Leftrightarrow x=4\)
\(\hept{\begin{cases}x^2-5y^2-8y=3\\\left(2x+4y-1\right)\sqrt{2x-y-1}=\left(4x-2y-3\right)\sqrt{x+2y}\end{cases}}\)
giải hộ mk hpt này vs , mk cảm ơn
ĐKXĐ: \(2x-y-1\ge0;x+2y\ge0\)
Đặt \(\sqrt{2x-y-1}=a;\sqrt{x+2y}=b\left(a,b\ge0\right)\). Khi đó ta có:
\(\left(2b^2-1\right)a=\left(2a^2-1\right)b\Leftrightarrow\left(a-b\right)\left(2ab+1\right)=0\)
\(\Leftrightarrow a=b\) hoặc \(2ab+1=0\)(loại vì \(a,b\ge0\))
Suy ra: \(\sqrt{2x-y-1}=\sqrt{x+2y}\Leftrightarrow x=3y+1\)
Pt đầu tiên trở thành: \(\left(3y+1\right)^2-5y^2-8y=3\)
\(\Leftrightarrow\left(y-1\right)\left(2y+1\right)=0\Leftrightarrow\orbr{\begin{cases}y=1\\y=-\frac{1}{2}\end{cases}}\)
+) Với \(y=1\Rightarrow x=4\Rightarrow\left(x;y\right)=\left(4;1\right)\)(tm)
+) Với \(y=-\frac{1}{2}\Rightarrow x=-\frac{1}{2}\Rightarrow\left(x;y\right)=\left(-\frac{1}{2};-\frac{1}{2}\right)\) (loại)
Vậy hpt có nghiệm duy nhất \(\left(x;y\right)=\left(4;1\right).\)
D=\(\sqrt{5+2\sqrt{2+2\sqrt{1+2\sqrt{2}+\sqrt{14-11\sqrt{2}+\sqrt{11-6\sqrt{2}}}}}}\)
giúp mk vs ạ......nội trong tối nay nha
cảm ơn các bạn trc
cố ghi đây đủ đây ghi tắt chỉ ghi các chỗ biến đổi thôi
\(D=\sqrt{5+2\sqrt{2+2\sqrt{1+2\sqrt{2}+\sqrt{14-11\sqrt{2}+\sqrt{11-6\sqrt{2}}}}}}\\ =\sqrt{5+2\sqrt{2+2\sqrt{1+2\sqrt{2}+\sqrt{14-11\sqrt{2}+\sqrt{\left(3-\sqrt{2}\right)^2}}}}}\\ =\sqrt{5+2\sqrt{2+2\sqrt{1+2\sqrt{2}+\sqrt{14-11\sqrt{2}+3-\sqrt{2}}}}}\\ =\sqrt{5+2\sqrt{2+2\sqrt{1+2\sqrt{2}+\sqrt{9+8-6\sqrt{8}}}}}\\ =\sqrt{5+2\sqrt{2+2\sqrt{1+2\sqrt{2}+\sqrt{\left(3-2\sqrt{2}\right)^2}}}}\\ =\sqrt{5+2\sqrt{2+2\sqrt{1+2\sqrt{2}+3-2\sqrt{2}}}}\\ =\sqrt{5+2\sqrt{2+2\sqrt{4}}}\\ =\sqrt{5+2\sqrt{6}}=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}=\sqrt{3}+\sqrt{2}^2\)
chụp cho cái ảnh đề bài nhìn thế này hiểu đk j số trên số dưới lẫn hết r
\(\sqrt{x-3}+\sqrt{5-x}=x^2-8x+18\)
giúp mk vs nhé, cảm ơn bạn nhiều
\(\sqrt{x-3}+\sqrt{5-x}=x^2-8x+18.\)
ĐK: \(3\le x\le5\)
\(PT\Leftrightarrow\sqrt{x-3}-1+\sqrt{5-x}-1=x^2-8x+18-2\)
\(\Leftrightarrow\frac{x-3-1}{\sqrt{x-3}-1}+\frac{5-x-1}{\sqrt{5-x}+1}=\left(x-4\right)^2\)
\(\Leftrightarrow\frac{x-4}{\sqrt{x-3}+1}+\frac{4-x}{\sqrt{5-x}+1}=\left(x-4\right)^2\)
\(\Leftrightarrow\left(x-4\right)^2-\frac{x-4}{\sqrt{x-3}+1}+\frac{x-4}{\sqrt{5-x}+1}=0\)
\(\Leftrightarrow\left(x-4\right).\left(x-4-\frac{1}{\sqrt{x-3}-1}+\frac{1}{\sqrt{5-x}+1}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-4=0\\x-4-\frac{1}{\sqrt{x-3}-1}+\frac{1}{\sqrt{5-x}+1}=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=4\left(TM\right)\\x-4-\frac{1}{\sqrt{x-3}-1}+\frac{1}{\sqrt{5-x}+1}=0\end{cases}}\) (Vô nghiệm)
Vậy pt có nghiệm x-4
bạn ơi tại sao đang \(\sqrt{5-x}\)-1 rồi ở dưới lại+1
giải hpt: \(\left\{{}\begin{matrix}x\sqrt{5}-\left(1+\sqrt{3}y\right)=1\\\left(1-\sqrt{3}\right)+y\sqrt{5}=1\end{matrix}\right.\)
mn làm chi tiết giúp mình vs ạ, mình cảm ơn trc
Lời giải:
HPT \(\Leftrightarrow \left\{\begin{matrix} x\sqrt{5}-y\sqrt{3}=2\\ y\sqrt{5}=\sqrt{3}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\sqrt{5}=y\sqrt{3}+2\\ y=\sqrt{\frac{3}{5}}\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\sqrt{5}=\frac{10+3\sqrt{5}}{5}\\ y=\sqrt{\frac{3}{5}}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=\frac{3+2\sqrt{5}}{5}\\ y=\sqrt{\frac{3}{5}}\end{matrix}\right.\)
Vậy.........