tìm GTNN của B= x^4-2xy(x^2-4y) + x^2 - 6x+10
tìm GTNN của biểu thức B=x^4-2xy(x^2-4y)+x^2-6x+10
có ai giúp em không
1) Tìm GTNN của B = 2x^2 + 9y^2 - 6xy - 6x -12y + 2010
2) Tìm GTLN của
a) D = -x^2 + 2xy - 4y^2 + 2x - 10y - 8
b) E = |x - 4| x (2 - |x - 4|) - 95
Tìm GTNN của biểu thức: P=x2+2y2+2xy-6x-4y+25
2P = \(2x^2+4xy+4y^2-12x-8y+50\)
= \(\left(x+2y\right)^2-2\left(x+2y\right)\cdot2+4+x^2-8x+16+30\)
= \(\left(x+2y-2\right)^2+\left(x-4\right)^2+30\ge30\)
=> P \(\ge15\)
Dấu '' = '' xảy ra khi x = 4 ; y = -1
P = x2 + 2y2 + 2xy - 6x - 4y + 25 đạt GTNN khi x2 + 2y2 + 2xy - 6x - 4y = -25 và P = 0
Lập luận đỉnh cao!! ^~^
tìm GTNN của: 2x^2+9y^2-6xy-6x-12y+2010
Tìm GTLN: -x^2+2xy-4y^2+2x-10y-8
Tìm GTLN: |x-4|(2-|x-4|)-95
CÁC BẠN GIẢI ĐÀY ĐỦ GIÚP MÌNH NHÉ
1) Tìm GTNN của B = 2x^2 + 9y^2 - 6xy - 6x -12y + 2010
2) Tìm GTLN của
a) D = -x^2 + 2xy - 4y^2 + 2x - 10y - 8
b) E = |x - 4| x (2 - |x - 4|) - 95
tìm x,y để biểu thức đạt GTNN và GTNN là bao nhiêu
x4 - 4y(x2-4y) + x2 -6x +10
Tìm GTNN của các biểu thức sau
a) A= x(x-3)(x-4)(x-7)
b) B= 2x2+y2 - 2xy - 2x +3
c) C = x2 +y2 -3x +3y
Tìm GTLN của các biểu thức sau
a) A= x2 - 6x +10
b) B = x2 + y2 -2x +4y +5
https://olm.vn/hoi-dapDễ z mà ko bít ..
Tìm GTNN của các biểu thức sau
a) A= x(x-3)(x-4)(x-7)
b) B= 2x2+y2 - 2xy - 2x +3
c) C = x2 +y2 -3x +3y
Tìm GTLN của các biểu thức sau
a) A= x2 - 6x +10
b) B = x2 + y2 -2x +4y +5
Tìm GTNN của P= x^2-2xy+4y^2-2x-10+8
\(P=\) \(x^2-2xy+4y^2-2x-10+8\)
\(=x^2-2xy+4y^2-2x-2\)
\(=x^2-2x\left(y+1\right)+\left(y+1\right)^2-\left(y+1\right)^2+4y^2-2\)
\(=\left(x-y-1\right)^2-y^2-2y-1+4y^2-2\)
\(=\left(x-y-1\right)^2+3y^2-2y-3\)
\(=\left(x-y-1\right)^2+3\left(y^2-\frac{2}{3}y-1\right)\)
\(=\left(x-y-1\right)^2+3\left(y^2-2y\frac{1}{3}+\frac{1}{9}-\frac{10}{9}\right)\)
\(=\left(x-y-1\right)^2+3\left(y-\frac{1}{3}\right)^2-\frac{10}{3}\)
\(\Rightarrow P\ge\frac{-10}{3}\)
Dấu ''='' xảy ra \(\Leftrightarrow\hept{\begin{cases}x-y-1=0\\y-\frac{1}{3}=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x-y=1\\y=\frac{1}{3}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=1+\frac{1}{3}=\frac{4}{3}\\y=\frac{1}{3}\end{cases}}\)
Vậy giá trị nhỏ nhất của P là \(\frac{-10}{3}\Leftrightarrow\hept{\begin{cases}x=\frac{4}{3}\\y=\frac{1}{3}\end{cases}}\)