Tìm GTLN:
F=\(\frac{-x^2+x-10}{x^2-2x+1}\) ( x khác 1 )
Giúp mình với :
a)Tìm GTNN của A = \(\left|x^2-x+1\right|+\left|x^2-x-2\right|\)
b ) tìm GTNLN của D =\(\frac{x+2}{\left|x\right|}\)với x khác 0 và x thuộc Z
c) tìm GTLN của F=\(\frac{7x-8}{2x-3}\)với x thuộc N
d) Timf GTNN của G=\(x\left(x+1\right)+x+2\)
e) Tìm GTLN của J = \(x^4+2x^2-7\)
f) Tìm GTLN của biểu thức N = \(\left(x+2\right)^2-4x+2\)
G ) tìm GTLN của T= \(4\left(3-\left|x-1\right|\right)+\left|1-x\right|\)
Câu 1
Tìm GTLN
B=\(\frac{2\sqrt{x}}{x+1}\)
câu 2 Cho biểu thức
Q=\(\frac{x^2+x+1}{x^2+2x+1}\) với x khác -1
với giá trị nào của x thì biểu thức Q đạt GTLN,tìm GTLN của Q
Câu 1:
Đầu tiên,ta chứng minh BĐT phụ (mang tên Cô si): \(x+y\ge2\sqrt{xy}\)
Thật vậy,điều cần c/m \(\Leftrightarrow x+y-2\sqrt{xy}\ge0\)
\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\) (luôn đúng)
Vậy BĐT phụ (Cô si) là đúng.
----------------------------------------------------------
Áp dụng BĐT Cô si,ta có: \(2\sqrt{x}=2\sqrt{1x}\le x+1\)
Do đó:
\(B=\frac{2\sqrt{x}}{x+1}\le\frac{x+1}{x+1}=1\)
Dấu "=" xảy ra \(\Leftrightarrow x=1\)
mk nghĩ cả hai câu sai nhưng xem lại đề giống y chang
Tìm GTLN của biểu thức: B=\(\frac{x^2+4x-14}{x^2-2x+1}\)(x khác 1)
Tìm GTNN; GTLN của các biểu thức sau:
a) A= x2 - 4x + 1
b) B= 5 - 8x - x2
c) C= 5x - x2
d) D= ( x - 1 )(x + 3)( x + 2 )( x + 6)
\(E=\frac{1}{x^2+5x+14}\)
f)\(F=\frac{2x^2+4x+10}{x^2+2x+3}\)
\(x^2-4x+1=x^2-2\cdot x\cdot2+4-4+1=\left(x-2\right)^2-4+1\)
\(=\left(x-2\right)^2-3\) \(\forall x\in Z\)
\(\Rightarrow A_{min}=-3khix=2\)
\(a,A=x^2-4x+1=x^2-2.2.x+2^2-3=\left(x-2\right)^2-3\ge-3\)
dấu = xảy ra khi x-2=0
=> x=2
Vậy MinA=-3 khi x=2
\(b,B=5-8x-x^2=-\left(x^2+8x+5\right)=-\left(x^2+2.4.x+4^2\right)+9=-\left(x+4\right)^2+9\le9\)
dấu = xảy ra khi x+4=0
=> x=-4
Vậy MaxB=9 khi x=-4
\(c,C=5x-x^2=-\left(x^2-5x\right)=-\left(x^2-\frac{2.x.5}{2}+\frac{25}{4}\right)+\frac{25}{4}=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)
dấu = xảy ra khi \(x-\frac{5}{2}=0\)
=> x=\(\frac{5}{2}\)
Vậy Max C=\(\frac{25}{4}\)khi x=\(\frac{5}{2}\)
\(E=\frac{1}{x^2+5x+14}=\frac{1}{x^2+\frac{2.x.5}{2}+\frac{25}{4}+\frac{31}{4}}=\frac{1}{\left(x+\frac{5}{2}\right)^2+\frac{31}{4}}\)
\(\left(x+\frac{5}{2}\right)^2+\frac{31}{4}\ge\frac{31}{4}\)
dấu = xảy ra khi \(x+\frac{5}{2}=0\)
=> x\(=-\frac{5}{2}\)
vì tử thức >0,mẫu thức nhỏ nhất và lớn hơn 0 => E lớnnhất khi mẫu thức nhỏ nhất
Vậy \(MaxE=\frac{31}{4}\)khi x\(=-\frac{5}{2}\)
Tự trình bày nhé. Gợi ý thôi
\(B=5-8x-x^2\)
\(B=-\left(x^2+2.x.4+4^2\right)+21\)
\(B=-\left(x+4\right)^2+21\le21\forall x\)
\(C=5x-x^2=-\left(x^2-2.x.2,5+2,5^2\right)+6,25=-\left(x-2,5\right)^2+6,25\le6,25\forall x\)
\(D=\left(x-1\right)\left(x+3\right)\left(x+2\right)\left(x+6\right)\)
\(D=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(D=\left(x^2+5x\right)^2-36\ge-36\forall x\)
Tìm x để f(x) đạt gtnn và tính gtnn đó
1, f(x)=3x2-2x-7
2, f(x)=5x2+7x
Tìm x để f(x) đạt gtln và tính gtln đó
1, f(x)=-5x2+9x-2
2, f(x)=-7x2+3x
tìm gtln
a)\(E=\frac{2x^2+4x+9}{x^2+2x+4}\)
b)\(F=\frac{6x-8}{x^2+1}\)
a) Ta có : \(E=2+\frac{1}{x^2+2x+4}=2+\frac{1}{\left(x+1\right)^2+3}\) đạt GTLN
\(\Leftrightarrow\frac{1}{\left(x+1\right)^2+3}\)đạt GTLN
\(\Leftrightarrow\left(x+1\right)^2+3\)đạt GTNN \(\Leftrightarrow x=-1\)
Vậy GTLN của E là \(\frac{7}{3}\)khi x = -1
\(F=\frac{6x-8}{x^2+1}=\frac{\left(x^2+1\right)-\left(x^2-6x+9\right)}{x^2+1}=1-\frac{\left(x-3\right)^2}{x^2+1}\)
F có GTLN \(\Leftrightarrow\frac{\left(x-3\right)^2}{x^2+1}\)có GTNN khi x = 3
Vậy GTLN của F là 1 khi x = 3
Cách khác cho câu b
\(F=\frac{6x-8}{x^2+1}\Rightarrow F\cdot x^2+F-6x+8=0\)
\(\Leftrightarrow F\cdot x^2-6x+\left(F+8\right)=0\)
Xét \(\Delta'=9-\left(F+8\right)\cdot F=9-F^2-8F\ge0\)
Đến đây chặn F là được nhế !!!!
1. Cho f(x) thoả mãn 3 . f(x) - f( 1 - x ) = x2 + 1 với mọi x. Tính f( 1 ), f( 0 ), f( -1 )
2. Tìm số nguyên x để
a) A = \(\frac{2016}{x-2019}\)đạt GTNN
b) B = \(\frac{31-2x}{15-2x}\)đạt GTLN
c) C = \(\frac{26-x}{x-20}\)đạt GTNN
AI giải nhanh đầy đủ 3 tick nha
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.
1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4
--> Pmin=4 khi x=4
2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1
=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6
<=> M=2t2+t-4\(\ge\)2.12+1-4=-1
Mmin=-1 khi t=1 hay x=2
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.