Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Thúy Hằng
Xem chi tiết
zZz Cool Kid_new zZz
21 tháng 6 2019 lúc 21:58

\(S=\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\frac{1}{5\cdot6}+....+\frac{1}{399\cdot400}\)

\(S=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+....+\frac{1}{399}-\frac{1}{400}\)

\(S=\left(1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+....+\frac{1}{399}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+....+\frac{1}{400}\right)\)

\(S=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{400}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+.....+\frac{1}{400}\right)\)

\(S=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{400}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{200}\right)\)

\(S=\frac{1}{201}+\frac{1}{202}+\frac{1}{203}+...+\frac{1}{400}\)

P/S:Mik ms phân tích dc cái tử như thế này,còn mẫu thì mik phân tích dc nhưng A lại ko gọn cho lắm.

EDG
Xem chi tiết
Y
21 tháng 6 2019 lúc 16:04

+ \(\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+...+\frac{1}{399\cdot400}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{399}-\frac{1}{400}\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{400}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{400}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{400}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}\right)\)

\(=\frac{1}{201}+\frac{1}{202}+\frac{1}{203}+...+\frac{1}{400}\)

+ \(\frac{1}{201\cdot400}+\frac{1}{202\cdot399}+...+\frac{1}{300\cdot301}\)

\(=\frac{1}{601}\cdot\left(\frac{201+400}{201\cdot400}+\frac{202+399}{202\cdot399}+...+\frac{300+301}{300\cdot301}\right)\)

\(=\frac{1}{601}\cdot\left(\frac{1}{201}+\frac{1}{400}+\frac{1}{202}+\frac{1}{399}+...+\frac{1}{300}+\frac{1}{301}\right)\)

\(=\frac{1}{601}\left(\frac{1}{201}+\frac{1}{202}+\frac{1}{203}+...+\frac{1}{400}\right)\)

Do đó : \(A=\frac{1}{\frac{1}{601}}=601\)

Phạm Hữu Hùng
Xem chi tiết
Đoàn Đức Hà
12 tháng 7 2021 lúc 16:29

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{50-49}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}=\frac{49}{50}\)

\(B=1.2+2.3+3.4+...+49.50\)

\(3B=1.2.3+2.3.3+3.4.3+...+49.50.3\)

\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+49.50.\left(51-48\right)\)

\(=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+49.50.51-48.49.50\)

\(=49.50.51\)

\(B=\frac{49.50.51}{3}=49.50.17\)

\(50^2.A-\frac{B}{17}=49.50-49.50=0\)

Khách vãng lai đã xóa
Nguyên Ngọc Hòa
Xem chi tiết
Lê Chí Cường
19 tháng 6 2015 lúc 9:10

Ta thấy:\(\frac{1}{1.2}=1-\frac{1}{2},\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3},...,\frac{1}{49.50}=\frac{1}{49}-\frac{1}{50}\)

=>\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

=>\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

=>\(A=1-\frac{1}{50}\)

=>\(A=\frac{49}{50}\)

Sakuraba Laura
6 tháng 3 2018 lúc 17:48

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(\Rightarrow A=1-\frac{1}{50}\)

\(\Rightarrow A=\frac{49}{50}\)

Huỳnh Bá Nhật Minh
5 tháng 6 2018 lúc 19:50

\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{49\cdot50}\)

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(A=\frac{1}{1}-\frac{1}{50}\)

\(A=\frac{50}{50}-\frac{1}{50}\)

\(A=\frac{49}{50}\)

Đinh Quang Triển
Xem chi tiết

A = 1 - \(\dfrac{1}{1.2}\) - \(\dfrac{1}{2.3}-\dfrac{1}{3.4}-\dfrac{1}{4.5}...-\dfrac{1}{97.98}\)

A= 1-\(\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{97.98}\right)\)

A= 1- \(\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}...+\dfrac{1}{97}-\dfrac{1}{98}\right)\)

A= 1- \(\left(\dfrac{1}{1}-\dfrac{1}{98}\right)\)

A=1-  1 + \(\dfrac{1}{98}\)

A= \(\dfrac{1}{98}\)

Akai Haruma
27 tháng 4 2023 lúc 10:53

Lời giải:

$1-A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{97.98}$

$1-A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{98-97}{97.98}$

$1-A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{97}-\frac{1}{98}$

$=1-\frac{1}{98}$

$\Rightarrow A=\frac{1}{98}$

Ngu Như Bò
Xem chi tiết
VRCT_Ran Love Shinichi
13 tháng 9 2016 lúc 16:07

Lời giải :

Đặt S=1.2+2.3+3.4+4.5+…+99.100+100.101

3S=1.2.3+2.3.3+3.4.3+4.5.3+…+99.100.3+100.101.3

=1.2(3−0)+2.3(4−1)+3.4(5−2)+4.5(6−3)+…+99.100(101−98)+100.101(102−99)

=0.1.2-1.2.3+1.2.3-2.3.4+...+99.100.101-100.101.102

=100.101.102

S=100.101.34=343400

Nguyễn Đình Chí
12 tháng 10 2022 lúc 21:53

1.Tính 

a) Ta có: 

  A=(1-1/22).(1-1/32)...(1-1/1002)

=>A=3/22.8/32.....9999/1002

=>A=(1.3/2.2).(2.4/3.3).....(99.101/100.100)

=>A=(1.2.3.....99/2.3.4.....100).(3.4.5.....101/2.3.4.....100)

=>A=1/100.101/2

=>A=101/200

b) Ta có: 

  B=-1/1.2-1/2.3-1/3.4-...-1/100.101

=>B=-(1/1.2+1/2.3+1/3.4+...+1/100.101)

=>B=-(1-1/2+1/2-1/3+1/3-1/4+...+1/100-1/101)

=>B=-(1-1/101)

=>B=-100/101

 c) Ta có:

 C=1.2+2.3+3.4+...+100.101

       =>3C=1.2.3+2.3.3+3.4.3+...+100.101.3

       =>3C=1.2.3+2.3.(4-1)+3.4.(5-2)+...+100.101.(102-99)

       =>3C=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-3.4.5+...+100.101.102

       =>3C=100.101.102

       =>3C=1030200

       =>C=343400

Chúc bạn hok tốt nhé >:)!!!!!

phong khởi
Xem chi tiết
Nguyễn acc 2
2 tháng 3 2022 lúc 16:07

\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2013.2014}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2013}-\dfrac{1}{2014}\\ =1-\dfrac{1}{2014}\\ =\dfrac{2013}{2014}\)

Thiện Khánh Lâm
Xem chi tiết
Trần Quốc Hiếu
Xem chi tiết