Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Kiều Quỳnh Anh
Xem chi tiết
Hoàng Kiều Quỳnh Anh
9 tháng 3 2022 lúc 21:06

Mọi người ơi, giúp em với ạ!

 

Nguyễn Lê Phước Thịnh
9 tháng 3 2022 lúc 22:27

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)

Nguyễn My
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 9 2021 lúc 12:19

Đặt \(cosx-sinx=t\Rightarrow-\sqrt{2}\le t\le\sqrt{2}\)

\(t^2=1-2sinx.cosx\Rightarrow sinx.cosx=\dfrac{1-t^2}{2}\)

Pt trở thành:

\(t\left(1+\dfrac{1-t^2}{2}\right)+1=0\)

\(\Leftrightarrow t^3-3t-2=0\)

\(\Leftrightarrow\left(t-2\right)\left(t+1\right)^2=0\Rightarrow\left[{}\begin{matrix}t=2\left(loại\right)\\t=-1\end{matrix}\right.\)

\(\Rightarrow cosx-sinx=-1\)

\(\Leftrightarrow\sqrt[]{2}cos\left(x+\dfrac{\pi}{4}\right)=-1\)

\(\Leftrightarrow cos\left(x+\dfrac{\pi}{4}\right)=-\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow cos\left(x+\dfrac{\pi}{4}\right)=cos\left(\dfrac{3\pi}{4}\right)\)

\(\Leftrightarrow...\)

Hoàng Kiều Quỳnh Anh
Xem chi tiết
ILoveMath
16 tháng 2 2022 lúc 14:58

\(a,A=\left(\dfrac{x+14\sqrt{x}-5}{x-25}+\dfrac{\sqrt{x}}{\sqrt{x}+5}\right):\dfrac{\sqrt{x}+2}{\sqrt{x}-5}\)

\(\Rightarrow A=\left(\dfrac{x+14\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\right).\dfrac{\sqrt{x}-5}{\sqrt{x}+2}\)

\(\Rightarrow A=\left(\dfrac{x+14\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}+\dfrac{x-5\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\right).\dfrac{\sqrt{x}-5}{\sqrt{x}+2}\)

\(\Rightarrow A=\dfrac{x+14\sqrt{x}-5+x-5\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}.\dfrac{\sqrt{x}-5}{\sqrt{x}+2}\)

\(\Rightarrow A=\dfrac{2x+9\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}.\dfrac{\sqrt{x}-5}{\sqrt{x}+2}\)

\(\Rightarrow A=\dfrac{2x+10\sqrt{x}-\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}\)

\(\Rightarrow A=\dfrac{2\sqrt{x}\left(\sqrt{x}+5\right)-\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}\)

\(\Rightarrow A=\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}\)

\(\Rightarrow A=\dfrac{2\sqrt{x}-1}{\sqrt{x}+2}\)

Trần Dương
Xem chi tiết
Nguyễn Thị Yến Vy
Xem chi tiết
Nguyễn Thị Hồng Thúy
Xem chi tiết
_Guiltykamikk_
16 tháng 6 2018 lúc 20:34

a) Đặt  \(A=4x-x^2-5\)

\(-A=x^2-4x+5\)

\(-A=\left(x^2-4x+4\right)+1\)

\(-A=\left(x-2\right)^2+1\)

Mà  \(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow-A\ge1\)

\(\Leftrightarrow A\le-1< 0\left(đpcm\right)\)

b) Đặt  \(B=x^2-2x+5\)

\(B=\left(x^2-2x+1\right)+4\)

\(B=\left(x-1\right)^2+4\)

Mà  \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow B\ge4>0\left(đpcm\right)\)

VRCT_Ran Love Shinichi
16 tháng 6 2018 lúc 20:35

a)4x-x2-5 = -(x2-4x+4)-1= -(x-2)^2 -1 < 0 với mọi x (đpcm)

b) x-2x+5= (x2-2x+1)+4=(x-1)^2 +4 >0  với mọi x (đpcm)

Hoàng Kiều Quỳnh Anh
Xem chi tiết
missing you =
28 tháng 4 2022 lúc 20:10

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y+1\right)\left(x+y-6\right)=0\\y-x-3=0\left(3\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=-\left(y+1\right)\left(1\right)\\x=6-y\left(2\right)\end{matrix}\right.\\y-x-3=0\left(3\right)\end{matrix}\right.\)

\(thế\left(1\right)\left(2\right)vào\left(3\right)\Rightarrow\left(x;y\right)\)

dinh huong
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 8 2021 lúc 16:32

Biểu thức này ko tồn tại cả min lẫn max

Nguyễn Việt Lâm
20 tháng 8 2021 lúc 16:49

\(\dfrac{1}{M}=\dfrac{\sqrt{x}-1}{2\sqrt{x}+4}=\dfrac{-\dfrac{1}{4}\left(2\sqrt{x}+4\right)+\dfrac{\sqrt{x}}{2}}{2\sqrt{x}+4}=-\dfrac{1}{4}+\dfrac{\sqrt{x}}{4\left(\sqrt{x}+2\right)}\)

Do \(\left\{{}\begin{matrix}\sqrt{x}\ge0\\\sqrt{x}+2>0\end{matrix}\right.\) \(\Rightarrow\dfrac{\sqrt{x}}{4\left(\sqrt{x}+2\right)}\ge0\)

\(\Rightarrow\dfrac{1}{M}\ge-\dfrac{1}{4}\)

Dấu "=" xảy ra khi \(x=0\)

trương khoa
Xem chi tiết
Akai Haruma
21 tháng 5 2021 lúc 22:28

Lời giải:

\(A=\frac{2a^2+4}{(1-a)(1+a)}-\frac{1-\sqrt{a}+1+\sqrt{a}}{(1+\sqrt{a})(1-\sqrt{a})}=\frac{2a^2+4}{(1-a)(1+a)}-\frac{2}{1-a}\)

\(=\frac{2a^2+4}{(1-a)(1+a)}-\frac{2(1+a)}{(1-a)(1+a)}=\frac{2a^2-2a+2}{(1-a)(1+a)}=\frac{2(a^2-a+1)}{1-a^2}\)