Tìm giá trị lớn nhất của biểu thức: A= \(\frac{4}{4x^2-4x+7}\)
a, Tìm giá trị lớn nhất của biểu thức: A=4x-x^2+3
b. Tìm giá trị nhỏ nhất của biểu thức:B=4x^2-12x+15
c,Tìm giá trị nhỏ nhất của biểu thức:C=4x^2+2y^2-4xy-4y+1
a)
\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
Daaus = xayr ra khi: x = 2
b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)
Dấu = xảy ra khi x = 3
c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu = xảy ra khi
2x = y và y = 2
=> x = 1 và y = 2
a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)
Dấu "=" <=> x = 2
b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)
Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)
c) \(4x^2+2y^2-4xy-4y+1\)
= \(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)
= \(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
a) Tìm giá trị nhỏ nhất của biểu thức: S= \(\dfrac{5x^4+4x^2+10}{x^4+2}\)
b) Tìm giá trị lớn nhất của biểu thức: T=\(\dfrac{2x^4-4x^2+8}{x^4+4}\)
c) Cho a là hằng số và a>0. Tìm giá trị nhỏ nhất của biểu thức: M=\(\dfrac{8y^8+2a\left(y-3\right)^2+2a^2}{4y^8+a^2}\)
Tìm giá trị lớn nhất của biểu thức
\(A=\frac{2x^2-4x+7}{x^2-2x+2}\)
\(A=\frac{2x^2-4x+7}{x^2-2x+2}=\frac{2.\left(x^2-2x+2\right)+3}{x^2-2x+2}=2+\frac{3}{x^2-2x+1+1}=2+\frac{3}{\left(x-1\right)^2+1}\)
\(\text{Để A max}\Leftrightarrow\left(\frac{3}{\left(x-1\right)^2+1}\right)max\Leftrightarrow\left[\left(x-1\right)^2+1\right]min\)vì (x-1)2+1 > 0
\(\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)
Vậy Max A=5 <=> x=1
\(A=\frac{2x^2-4x+7}{x^2-2x+2}\)
\(A=\frac{2\left(x^2-2x+2\right)+3}{x^2-2x+2}\)
\(A=\frac{2\left(x^2-2x+2\right)}{x^2-2x+2}+\frac{3}{x^2-2x+2}\)
\(A=2+\frac{3}{x^2-2x+1+1}\)
\(A=2+\frac{3}{\left(x-1\right)^2+1}\le2+\frac{3}{0+1}=2+3=5\)
Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
\(B=\left(1-\frac{x^2}{x+2}\right)\cdot\frac{x^2+4x+4}{x}-\frac{x^2+6x+4}{x}\)
a, Tìm điều kiện của x để giá trị của biểu thức B được xác định
b,Rút gọn biểu thức B
c,Tính giá trị của B khi x=-3
d, Tìm giá trị của x để biểu thức B có giá trị lớn nhất. Tìm giá trị lớn nhất đó
a, ĐK: \(\hept{\begin{cases}x+2\ne0\\x\ne0\end{cases}\Rightarrow}\hept{\begin{cases}x\ne-2\\x\ne0\end{cases}}\)
b, \(B=\left(1-\frac{x^2}{x+2}\right).\frac{x^2+4x+4}{x}-\frac{x^2+6x+4}{x}\)
\(=\frac{-x^2+x+2}{x+2}.\frac{\left(x+2\right)^2}{x}-\frac{x^2+6x+4}{x}\)
\(=\frac{\left(-x^2+x+2\right)\left(x+2\right)-\left(x^2+6x+4\right)}{x}\)
\(=\frac{-x^3-2x^2+x^2+2x+2x+4-\left(x^2+6x+4\right)}{x}\)
\(=\frac{-x^3-2x^2-2x}{x}=-x^2-2x-2\)
c, x = -3 thỏa mãn ĐKXĐ của B nên với x = -3 thì
\(B=-\left(-3\right)^2-2.\left(-3\right)-2=-9+6-2=-5\)
d, \(B=-x^2-2x-2=-\left(x^2+2x+1\right)-1=-\left(x+1\right)^2-1\le-1\forall x\)
Dấu "=" xảy ra khi \(x+1=0\Rightarrow x=-1\)
Vậy GTLN của B là - 1 khi x = -1
Tìm giá trị lớn nhất của biểu thức C=\(\frac{x^2-4x-4}{x^2-4x+5}\)
Tìm giá trị nhỏ nhất hoặc lớn nhất của biểu thức:
a) A=x^2-2x+7
b)B=4x-4x^2
a) A=x^2-2x+7
=x2
-2x+1+6
=(x-1)2+6
vì (x-1)2 ≥ với mọi x nên
(x-1)2+6 ≥ 6
dấu "=" xảy ra khi:
x-1=0
<=>x=1
Vậy GTNN của A là 6 tại x=1
b)B=4x-4x^2
=-4x2+4x-1+1
=-(4x2+4x+1)+1
=-(2x+1)2+1
vì -(2x+1)2 ≤ 0 nên
-(2x+1)2+1 ≤ 1
Dấu "=" xảy ra khi
2x+1=0
<=>x=-1/2
Vậy GTLN của B là 1 tại x=-1/2
:D
Có thể làm theo cách này :
a) A = x^2 - 2x + 7
=> A = x^2 - 2x . 1/2 + (1/2)^2 + 27/4
= [x^2 - 2x . 1/2 + (1/2)^2] + 27/4
= (x - 1/2)^2 + 27/4
mà (x - 1/2)^2 > 0
=> (x - 1/2)^2 + 27/4 > 27/4
Vậy giá trị nhỏ nhất của A = 27/4 tại x = 1/2
:D
a) tìm giá trị lớn nhất của các biểu thức :
A= 2x-3x^2-4 B=-x^2-4x
b) Tìm giá trị nhỏ nhất của các biểu thức :
A= x^2-2x-1 B= 4x^2+4x+5
a) Giá trị lớn nhất:
\(A=2x-3x^2-4=-3\left(x^2-\frac{2}{3}x+\frac{4}{3}\right)=-3\left[x^2-2.x.\frac{1}{3}+\left(\frac{1}{3}\right)^2+\frac{35}{9}\right]=-3\left(x-\frac{1}{3}^2\right)-\frac{35}{3}\)
Vì \(\left(x-\frac{1}{3}\right)^2\ge0\left(x\in R\right)\)
Nên \(-3\left(x-\frac{1}{3}\right)^2\le0\left(x\in R\right)\)
do đó \(-3\left(x-\frac{1}{3}\right)^2-\frac{35}{3}\le-\frac{35}{3}\left(x\in R\right)\)
Vậy \(Max_A=-\frac{35}{3}\)khi \(x-\frac{1}{3}=0\Rightarrow x=\frac{1}{3}\)
\(B=-x^2-4x=-\left(x^2+4x\right)=-\left(x^2+2.x.2+2^2-2^2\right)=-\left(x+2\right)^2+4\)
Vì \(\left(x+2\right)^2\ge0\left(x\in R\right)\)
nên \(-\left(x+2\right)^2\le0\left(x\in R\right)\)
do đó \(-\left(x+2\right)^2+4\le4\left(x\in R\right)\)
Vậy \(Max_B=4\)khi \(x+2=0\Rightarrow x=-2\)
b) Giá trị nhỏ nhất
\(A=x^2-2x-1=x^2-2.x.+1-2=\left(x-1\right)^2-2\)
Vì \(\left(x-1\right)^2\ge0\left(x\in R\right)\)
nên \(\left(x-1\right)^2-2\ge-2\left(x\in R\right)\)
Vậy \(Min_A=-2\)khi \(x-1=0\Rightarrow x=1\)
\(B=4^2+4x+5=\left(2x\right)^2+2.2x.1+1+4=\left(2x+1\right)^2+4\)
vì \(\left(2x+1\right)^2\ge0\left(x\in R\right)\)
nên \(\left(2x+1\right)^2+4\ge4\left(x\in R\right)\)
Vậy \(Min_B=4\)khi \(2x+1=0\Rightarrow x=-\frac{1}{2}\)
Tìm giá trị nhỏ nhất hoặc lớn nhất của biểu thức:
a) A=x^2-2x+7
b)B=4x-4x^2
a) A=x^2-2x+7
=x2-2x+1+6
=(x-1)2+6
vì (x-1)2\(\ge\)với mọi x nên
(x-1)2+6\(\ge\)6
dấu "=" xảy ra khi:
x-1=0
<=>x=1
Vậy GTNN của A là 6 tại x=1
b)B=4x-4x^2
=-4x2+4x-1+1
=-(4x2+4x+1)+1
=-(2x+1)2+1
vì -(2x+1)2\(\le\)0 nên
-(2x+1)2+1\(\le\)1
Dấu "=" xảy ra khi
2x+1=0
<=>x=-1/2
Vậy GTLN của B là 1 tại x=-1/2
a) A = x2 - 2x + 7
=> A = x2 - 2x . 1/2 + (1/2)2 + 27/4
= [x2 - 2x . 1/2 + (1/2)2] + 27/4
= (x - 1/2)2 + 27/4
mà (x - 1/2)2 > 0
=> (x - 1/2)2 + 27/4 > 27/4
Vậy giá trị nhỏ nhất của A = 27/4 tại x = 1/2
Tìm giá trị lớn nhất của biểu thức: A= x2 + 4x +19/x2 + 4x + 7
Ta có:
A = \(\frac{x^2+4x+19}{x^2+4x+7}=\frac{\left(x^2+4x+7\right)+12}{x^2+4x+7}=1+\frac{12}{\left(x^2+4x+4\right)+3}=1+\frac{12}{\left(x+2\right)^2+3}\)
Ta thấy : \(\left(x+2\right)^2\ge0\forall x\) => \(\left(x+2\right)^2+3\ge3\forall x\)
=> \(\frac{12}{\left(x+2\right)^2+3}\le4\forall x\)
=> \(1+\frac{12}{\left(x+2\right)^2+3}\le4\forall x\)
Dấu "=" xảy ra <=> x + 2 = 0 <=> x = -2
Vậy MaxA = 4 khi x = -2
\(A=\frac{x^2+4x+19}{x^2+4x+7}\)
Để A đạt GTLN thì \(\frac{1}{A}\)phải đạt GTNN
Ta có: \(\frac{1}{A}=\frac{x^2+4x+7}{x^2+4x+19}=1-\frac{12}{x^2+4x+19}\)
Để \(\frac{1}{A}\)đạt GTNN thì \(\frac{12}{x^2+4x+19}\)phải đạt GTLN => \(x^2+4x+19\)phải đạt GTNN
\(x^2+4x+19=\left(x+2\right)^2+15\ge15\)
Dấu "=" khi x + 2 = 0 <=> x = -2
Do đó GTNN của \(\frac{1}{A}\)là \(1-\frac{12}{15}=\frac{1}{5}\)khi x = -2
Vậy GTLN của A là 5 khi x = -2
tìm giá trị lớn nhất của biểu thức A=\frac{4x+3}{x^2+1}