Rut gon A = \(\frac{x^2-2x+1}{x^2-x}-\frac{2x^3-x^2}{x^4-x^3}\)
Rut gon bt
\(A=[\frac{(x-1)^2}{x^2+x+1}-\frac{1+4x-2x^2}{x^3-1}-\frac{1}{1-x}]^2:\frac{8x^3+1}{8x^2-4x+2}\)
Rut gon bt
\(A=\left(\frac{2+x}{2-x}-\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\left(\frac{x^2-3x}{2x^2-x^3}\right)\)
Cho A = \(\frac{3\sqrt{x}-3}{x\sqrt{x}-2x+2\sqrt{x}-1}-\frac{4x\sqrt{x}-4}{x^3-1}\)(x>1). Rut gon A va tim x de A=1
Rut gon bt
\(\left(\frac{2+x}{2-x}-\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\left(\frac{x^2-3x}{2x^2-x^3}\right)\)
I> Cho bieu thuc
A = ( \(\frac{2x+1}{2x-1}\)- \(\frac{2x-1}{2x+1}\)) : \(\frac{8x}{3-6x}\)( voi x khac + - \(\frac{1}{2}\)x khax 0 )
a . Rut gon bieu thuc A
b . Tim x de A = \(\frac{3}{-4031}\)
II> Cho bieu thuc
B = ( \(\frac{1}{1-x}\)+\(\frac{2}{x+1}\)-\(\frac{5-x}{1-x^2}\)) : \(\frac{1-2x}{x^2-4}\)
a . Rut gon bieu thuc B
b . Tìm giá trị nguyên của x để giá trị của biểu thức B là số nguyên
Rut gon
\(\frac{1}{2}x^2.\left(6x-3\right)-x.\left(x^2+\frac{1}{2}\right)+\frac{1}{2}\left(x+4\right)\)
\(2x\left(3x^3-x\right)-4x^2\left(x-x^2+1\right)+\left(x-3x^2\right)x\)
\(\frac{1}{2}x^2\left(6x-3\right)-x\left(x^2+\frac{1}{2}\right)+\frac{1}{2}\left(x+4\right)\)
\(=\frac{1}{2}x^2.6x+\frac{1}{2}x^2.\left(-3\right)+\left(-x\right).x^2+\left(-x\right).\frac{1}{2}+\frac{1}{2}.x+\frac{1}{2}.4\)
\(=3x^3-\frac{3}{2}x^2-x^3-\frac{1}{2}x+\frac{1}{2}x+2\)
\(=\left(3x^3-x^3\right)-\frac{3}{2}x^2+\left(-\frac{1}{2}x+\frac{1}{2}x\right)+2\)
\(=2x^3-\frac{3}{2}x^2+2\)
\(a,\)\(\frac{1}{2}x^2\left(6x-3\right)-x\left(x^2+\frac{1}{2}\right)+\frac{1}{2}\left(x+4\right)\)
\(=3x^3-\frac{3}{2}x^2-x^3-\frac{1}{2}x+\frac{1}{2}x+2\)
\(=2x^3-\frac{3}{2}x^2+2\)
\(b,\)\(2x\left(3x^3-x\right)-4x^2\left(x-x^2+1\right)+\left(x-3x^2\right)x\)
\(=6x^4-2x^2-4x^3+4x^4-4x^2+x^2-3x^3\)
\(=10x^4-7x^3-5x^2\)
\(\frac{1}{2}x^2.\left(6x-3\right)-x\left(x^2+\frac{1}{2}\right)+\frac{1}{2}\left(x+4\right)\)
\(=3x^3-\frac{3}{2}x^2-x^3-\frac{1}{2}x+\frac{1}{2}x+2\)
\(=2x^3-\frac{3}{2}x^2+2\)
\(\frac{6}{x-3}+\frac{2x^2}{^{x^2}-1}+\frac{6-2x}{x^{3^{ }}-3x^2-x+3}\)
a / Rut gon A
b/ Tim x thuoc Z de A thuoc Z
c/ Tinh gia tri cua A khi x = căn 2
rut gon bieu thuc: \(\frac{\sqrt{\sqrt{\frac{x-1}{x+1}}+\sqrt{\frac{x+1}{x-1}}-2}\left(2x+\sqrt{x^2+1}\right)}{\sqrt{\left(x+1\right)^3}-\sqrt{\left(x-1\right)^2}}\)
rut gon A= \(\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}\) - \(\frac{2x+\sqrt{x}}{\sqrt{x}}\)+\(\frac{2x-2}{\sqrt{x}-1}\)