Rút gọn
B=\(\frac{x+5}{2x}-\frac{x-6}{5-x}-\frac{2x^2-2x-50}{2x^2-10x}\)
rút gọn
\(\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x^2+10x}\)
\(\frac{x^3+2x^2}{2x^2+10x}\)+\(\frac{2x^2-10x+10x-50}{2x^2-10x}\)+\(\frac{50-5x}{2x^2+10x}\)=\(\frac{x^3+4x^2-5x}{2x^2-10x}\)=\(\frac{x\left(x^2+4x-5\right)}{2x\left(x-5\right)}\)=\(\frac{x\left(x-1\right)\left(x-5\right)}{2x\left(x-5\right)}\)=\(\frac{x-1}{2}\)
Rút gọn
a) \(\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}\)
b) (\(\frac{2x+1}{2x-1}-\frac{2x-1}{2x+1}\)) / \(\frac{4x}{10x-5}\)
c) \(\frac{x^2 +x}{5x^2-10x+5}\)/ \(\frac{3x+3}{5x-5}\)
Cho biểu thức
A=\(\frac{x^2+2x}{2x+10}\)+\(\frac{x-5}{x}\)-\(\frac{50-5x}{2x\left(x+5\right)}\)
a) Tìm điệu kiện xác định
b) Rút gọn A
c) Tìm x để A=1
Rút gọn
a)\(\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}\)
b)\(\left\{\frac{2x+1}{2x-1}-\frac{2x-1}{2x+1}\right\}:\frac{4x}{10x-5}\)
c)\(\frac{x^2+x}{5x^2-10x+5}:\frac{3x+3}{5x-5}\)
\(a,\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}\) (x khác -3; khác 0)
\(=\frac{3}{2\left(x+3\right)}-\frac{x-6}{2x.\left(x+3\right)}=\frac{3x}{2x.\left(x+3\right)}-\frac{x-6}{2x.\left(x+3\right)}=\frac{3x-x+6}{2x.\left(x+3\right)}=\frac{2x+6}{x.\left(2x+6\right)}=\frac{1}{x}\)
\(b,\left(\frac{2x+1}{2x-1}-\frac{2x-1}{2x+1}\right):\frac{4x}{10x-5}\) (x khác 0 , khác 1/2 khác -1/2 )
\(=\left(\frac{\left(2x+1\right)^2}{\left(2x-1\right)\left(2x+1\right)}-\frac{\left(2x-1\right)^2}{\left(2x-1\right)\left(2x+1\right)}\right).\frac{10x-5}{4x}\)
\(=\left(\frac{4x^2+4x+1}{\left(2x-1\right)\left(2x+1\right)}-\frac{4x^2-4x+1}{\left(2x-1\right)\left(2x+1\right)}\right).\frac{10x-5}{4x}\)
\(=\frac{8x}{\left(2x-1\right)\left(2x+1\right)}.\frac{5.\left(2x-1\right)}{4x}=\frac{10}{2x+1}\)
\(c,\frac{x^2+x}{5x^2-10x+5}:\frac{3x+3}{5x-5}\) (x khác 1 ; khác -1)
\(=\frac{x.\left(x+1\right)}{5.\left(x^2-2x+1\right)}.\frac{5x-5}{3x+3}=\frac{x.\left(x+1\right)}{5.\left(x-1\right)^2}.\frac{5\left(x-1\right)}{3.\left(x+1\right)}=\frac{x}{3.\left(x-1\right)}=\frac{x}{3x-3}\)
Rút gọn
\(\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x^2+10x}\)
AI NHANH MK k CHO
Rút gọn
a)\(\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}\)
b)\(\left\{\hept{\begin{cases}2x+1\\2x-1\end{cases}-\frac{2x-1}{2x+1}}\right\}:\frac{4x}{10x-5}\)
c)\(\frac{x^2+x}{5x^2-10x+5}:\frac{3x+3}{5x-5}\)
Cho A= \(\frac{x-5}{x-4}\); B= \(\frac{x+5}{2x}-\frac{x-6}{5-x}-\frac{2x^2-2x-50}{2x^2-10x}\)
a, Tính A khi \(x^2-3x=0\)
b, Rút gọn B
c, Tìm giá trị nguyên của x để P= A.B có giá trị nguyên
Đk : \(x\ne5;x\ne0;x\ne4\)
a) ta có:
\(x^2-3x=0\)
\(\Leftrightarrow x\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\left(KTM\right)\\x=3\left(TM\right)\end{cases}}\)
Thay x= 3 vào biểu thức A , ta được :
\(A=\frac{3-5}{3-4}=\frac{-2}{-1}=2\)
vậy ..............
b) \(B=\frac{x+5}{2x}-\frac{x-6}{5-x}-\frac{2x^2-2x-50}{2x^2-10x}\)
\(B=\frac{x+5}{2x}+\frac{6-x}{x-5}-\frac{2x^2-2x-50}{2x\left(x-5\right)}\)
\(B=\frac{\left(x-5\right)\left(x+5\right)+2x\left(6-x\right)-2x^2+2x+50}{2x\left(x-5\right)}\)
\(B=\frac{x^2-25+12x-2x^2-2x^2+2x+50}{2x\left(x-5\right)}\)
\(B=\frac{-3x^2+25+14x}{2x\left(x-5\right)}\)
c) Ta có :
\(P=A.B\)
\(P=\frac{x-5}{x-4}.\frac{-3x^2+25+14x}{2x\left(x-5\right)}\)
\(P=\frac{-3x^2+25+14x}{2x\left(x-4\right)}\)
\(P=\frac{-3x^2+25+14x}{2x^2-8x}\)
Cho biểu thức \(P=\left(\frac{x}{x^2-36}-\frac{x-6}{x^2+6x}\right):\frac{2x-6}{x^2+6x}\left(x\ne-6,x\ne6,x\ne0,x\ne3\right)\)
a, Rút gọn biểu thức P.
b, Tìm x, để giá trị của P=1.
c, Tìm x, để P < 0
Cho \(A=\frac{x-5}{x-4}\) và \(B=\frac{x+5}{2x}-\frac{x-6}{5-x}-\frac{2x^2-2x-50}{2x^2-10x}\)
ĐKXĐ: x≠ 0,x≠ 4,x≠ 5
a)tính giá trị của A khi 2x^2 -3x=0
b)rút gọn B
c)tìm giá trị nguyên của x để P=A:B có giá trị nguyên
1. Cho bt P= (1/√x+2 + 1/√x-2 ) . √x-2/√x với x>0, x khác 4
a) rút gọn P
b) tìm x để P>1/3
c) tìm các giá trị thực của x để Q=9/2P có giá trị nguyên
2. Cho 2 biểu thức
A= 1-√x / 1+√ x và B= ( 15-√x/ x-25 + 2/√x+5) : √x+1/√ x-5 với x lớn hơn hoặc bằng 0, x khác 25
a) tính giá trị của A khi x= 6-2√5
b) rút gọn B
c) tìm a để pt A-B=a có nghiệm
chúc bạn học tốt
Bài 1 :
\(a,P=\left(\frac{x}{x^2-36}-\frac{x-6}{x^2+6x}\right):\frac{2x-6}{x^2+6x}=\left[\frac{x}{\left(x+6\right)\left(x-6\right)}-\frac{x-6}{x\left(x+6\right)}\right]:\frac{2x-6}{x\left(x+6\right)}\)
\(=\frac{x^2-\left(x-6\right)^2}{x\left(x+6\right)\left(x-6\right)}.\frac{x\left(x+6\right)}{2x-6}=\frac{6\left(2x-6\right)}{x\left(x+6\right)\left(x-6\right)}.\frac{x\left(x+6\right)}{2x-6}\)
\(=\frac{6}{x-6}\)
\(b,\)Với \(x\ne-6;x\ne6;x\ne0;x\ne3\) Thì
\(P=1\Rightarrow\frac{6}{X-6}=1\Rightarrow6=x-6\Rightarrow x=12\)(Thỏa mãn \(ĐKXĐ\))
\(c,\)Ta có :
\(P< 0\Rightarrow\frac{6}{X-6}< 0\Rightarrow X-6< 0\Rightarrow X< 6\)
Do : \(x\ne-6;x\ne6;x\ne0;x\ne3\) ,Nên với \(x< 6\)và \(x\ne-6;x\ne0;x\ne3\) thì \(P< 0\)
Bài 1 :
a ) Ta có :
\(P=\left(\frac{x}{x^2-36}-\frac{x-6}{x^2+6x}\right):\frac{2x-6}{x^2+6x}\)
\(=\left(\frac{x}{\left(x-6\right)\left(x+6\right)}-\frac{x-6}{x\left(x+6\right)}\right):\frac{2x-6}{x\left(x+6\right)}\)
\(=\frac{x.x-\left(x-6\right)\left(x-6\right)}{x\left(x-6\right)\left(x+6\right)}.\frac{x\left(x+6\right)}{2x-6}\)
\(=\frac{x^2-x^2+12x-36}{x-6}.\frac{1}{2\left(x-3\right)}\)
\(=\frac{12\left(x-3\right)}{x-6}.\frac{1}{2\left(x-3\right)}\)
\(=\frac{6}{x-6}\)
b ) \(P=1\Leftrightarrow\frac{6}{x-6}=1\Leftrightarrow x-6=6\Leftrightarrow x=12\left(tm\right)\)
c ) \(p< 0\Leftrightarrow\frac{6}{x-6}< 0\Leftrightarrow x-6< 0\Rightarrow x< 6\)
cho \(A=\frac{x-5}{x-4}\) ; \(B=\frac{x+5}{2x}-\frac{x-6}{5-x}-\frac{2x^2-2x-50}{2x^2-10x}\)
a) tính gt A khi x2-3x=0
b) rút gọn B
c) tìm x nguyên để P=A:B có gt nguyên
giải nhanh hộ mk nha các bạn , mk đang cần gấp .,..
ĐK của A \(x\ne4\),ĐK của B \(\hept{\begin{cases}x\ne0\\x\ne5\end{cases}}\)
a, \(x^2-3x=0\Rightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
Với \(x=0\Rightarrow A=\frac{-5}{-4}=\frac{5}{4}\)
Với \(x=3\Rightarrow A=\frac{3-5}{3-4}=2\)
b. \(B=\frac{x+5}{2x}+\frac{x-6}{x-5}-\frac{2x^2-2x-50}{2x\left(x-5\right)}=\frac{\left(x+5\right)\left(x-5\right)+2x\left(x-6\right)-2x^2+2x+50}{2x\left(x-5\right)}\)
\(=\frac{x^2-10x+25}{2x\left(x-5\right)}=\frac{\left(x-5\right)^2}{2x\left(x-5\right)}=\frac{x-5}{2x}\)
c. \(P=\frac{A}{B}=\frac{x-5}{x-4}.\frac{2x}{x-5}=\frac{2x}{x-4}=\frac{2x-8}{x-4}+\frac{8}{x-4}=2+\frac{8}{x-4}\)
P nguyên \(\Leftrightarrow x-4\inƯ\left(8\right)\Rightarrow x-4\in\left\{-8;-4;-2;-1;1;2;4;8\right\}\)
\(\Rightarrow x\in\left\{-4;0;2;3;5;6;8;12\right\}\)
So sánh điều kiện ta thấy \(x\in\left\{-4;2;3;6;8;12\right\}\)thì P nguyên
Giải các phương trình:
\(a,\frac{x+5}{x^2-5x}-\frac{x-5}{2x^2+10x}=\frac{x+25}{2x^2-50}\)
\(b,\frac{2}{4-x^2}+\frac{1}{x^2-2x}=\frac{x-4}{x^2+2x}\)