Cho abc = 2
Rút gọn A= a/ab+a+2 + b/bc+b+2 + c/ac+c+2
cho (a+b+c)^2 = a^2 + b^2 +c^2 và abc khác 0
cmr bc/a^2 + ac/b^2 +ab/c^2 = 3
cho abc=1. rút gọn
a/ab+a+1 + b/bc+b+1 + c/ca+c+1
Bài 1: Cho a+b+c=0; rút gọn biểu thức A= a^2/(a^2-b^2-c^2) + b^2/(b^2-c^2-a^2) + c^2/(c^2-b^2-a^2)
Bài 2: Cho abc=2; rút gọn A= a/(ab+a+2) + b/(bc+b+1) + 2c/(ac+2c+2)
Rút gọn biểu thức:
M= a/(ab+a+2)+b/(bc+b+1)+c/(ac+2c+2). Biết abc=2
Bài 1: Cho abc=2; rút gọn A= a/ab+a+2 + b/bc+b+1 + 2c/ac+2c+2
Bài 2: Cho x/a+y/b+z/c=2 (1); a/x+b/y+c/z=2 (2)
Tính D= (a/x)^2+(b/y)^2+(c/z)^2
\(A=\frac{a}{ab+a+2}+\frac{b}{bc+b+1}+\frac{2c}{ac+2c+2}\)
\(=\frac{a}{ab+a+abc}+\frac{b}{bc+b+1}+\frac{abc^2}{ac+abc^2+abc}\)
\(=\frac{a}{a\left(bc+b+1\right)}+\frac{b}{bc+b+1}+\frac{abc^2}{ac\left(bc+b+1\right)}\)
\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{bc}{bc+b+1}\)
\(=\frac{bc+b+1}{bc+b+1}=1\)
cho \(abc=2\)
rút gọn: A=\(\frac{a}{ab+a+2}+\frac{b}{bc+b+1}+\frac{c}{ac+2c+2}\)
cho mình xửa lại một chút nha:tính : A=\(\frac{a}{ab+a+2}+\frac{b}{bc+b+1}+\frac{2c}{ca+2c+2}\)
cho abc=2. rút gọn biểu thức:
a/(ab+a+2)+b/(bc+b+1)+2c/(ac+2c+2)
\(\frac{a}{ab+a+2}\)+ \(\frac{b}{bc+b+1}\)+ \(\frac{2c}{ac+2c+2}\)
= \(\frac{a}{ab+a+2}\)+ \(\frac{ab}{a\left(bc+b+1\right)}\)+ \(\frac{2abc}{ab\left(ac+2c+2\right)}\)
= \(\frac{a}{ab+a+2}\)+ \(\frac{ab}{abc+ab+a}\)+ \(\frac{2abc}{a^2bc+2abc+2ab}\)
= \(\frac{a}{ab+a+2}\)+ \(\frac{ab}{ab+a+2}\)+ \(\frac{2}{ab+a+2}\) (vì abc = 2 )
= \(\frac{ab+a+2}{ab+a+2}\)= 1
Cho abc=2. Rút gọn biểu thức: \(M=\dfrac{a}{ab+a+2}+\dfrac{b}{bc+b+1}+\dfrac{2c}{ac+2c+2}\)
M\(=\dfrac{a}{ab+a+2}+\dfrac{b}{bc+b+1}+\dfrac{2c}{ac+2c+2}\)
\(M=\dfrac{a}{ab+a+abc}+\dfrac{b}{bc+b+1}+\dfrac{2bc}{b\left(ac+2c+2\right)}\)
M = \(\dfrac{a}{a\left(b+1+bc\right)}+\dfrac{b}{b+1+bc}+\dfrac{2bc}{abc+2bc+2b}\)
M=\(\dfrac{1}{b+1+bc}+\dfrac{b}{b+1+bc}+\dfrac{2bc}{2+2bc+2b}\)
M = \(\dfrac{1+b}{b+1+bc}+\dfrac{2bc}{2\left(1+bc+b\right)}\)
M = \(\dfrac{1+b}{b+1+bc}+\dfrac{bc}{b+1+bc}=\dfrac{1+b+bc}{b+1+bc}=1\)
Rút gọn
( a + b + c ) (a^2 + b^2 + c^2 - ab - ac - bc )
(a+b+c)(a² + b² + c² - ab - bc - ac )
= (a+b+c)(a² + b² + c² +2ab +2bc + 2ac - 3ab - 3bc - 3ac )
= (a+b+c)[(a² + b² + c² +2ab +2bc + 2ac) - (3ac + 3bc) - 3ab ]
= (a+b+c)[(a+b+c)² -3(a+b).c - 3ab]
= (a+b+c)³ - 3(a+b).c (a+b+c) -3ab(a+b+c) NHÂN (a+b+c) vào ngoặc vuông
= (a+b)³ -3ab(a+b) + c³ -3abc
= a³ + b³ + c³ - 3abc
Đây ạ, chúc bn học tốt ạ
k cho mik nha
cảm ơn
thanks
hok tốt
Rút gọn : \(P=\frac{bc-a^2+ac-b^2+ab-c^2}{a\left(bc-a^2\right)+b\left(ac-b^2\right)+c\left(ab-c^2\right)}\)
Rút gọn phân thức:
(a^2+b^2+c^2)(a+b+c)+(ab+ac+bc)/(a+b+c)^2-(ab+bc+ca)
Sửa đề:
\(\frac{\left(a^2+b^2+c^2\right)\left(a+b+c\right)+\left(ab+bc+ca\right)\left(a+b+c\right)}{\left(a+b+c\right)^2-\left(ab+bc+ca\right)}\)
\(=\frac{\left(a^2+b^2+c^2+ab+bc+ca\right)\left(a+b+c\right)}{a^2+b^2+c^2+2ab+2bc+2ca-\left(ab+bc+ca\right)}\)
\(=\frac{\left(a^2+b^2+c^2+ab+bc+ca\right)\left(a+b+c\right)}{a^2+b^2+c^2+ab+bc+ca}\)
\(=a+b+c\left(a^2+b^2+c^2+ab+bc+ca\ne0\right)\)
(a^2+b^2+c^2)(a+b+c)+(ab+ac+bc)^2/(a+b+c)^2-(ab+bc+ca) có đúng đề ko ạ