Tim tat ca so nguyen sao cho p + 2 va p + 4 cung la so nguyen to
Tim tat ca cac so nguyen to p sao cho p+2 va p+28 cung la so nguyen to
p chỉ có thể là 1 mà 1 ko phải số nguyên tố=> ko có giá trị p thỏa mãn
tim tat ca cac so nguyen to p va q sao cho : 7p+q va pq+11 cung la so nguyen to
Tim tat ca cac so nguyen to p va q sao cho so 7p+q va pq+11 cung la cac so nguyen to
a, tim tat ca cac so nguyen to p sao cho p+11 cung la so nguyen to
b,tim tat ca cac so nguyen to p de p+8,p+10 cung la cac so nguyen to
a: Trường hợp 1: p=2
=>p+11=13(nhận)
Trường hợp 2: p=2k+1
=>p+11=2k+12(loại)
b: Trường hợp 1: p=3
=>p+8=11 và p+10=13(nhận)
Trường hợp 2: p=3k+1
=>p+8=3k+9(loại)
Trường hợp 3: p=3k+2
=>p+10=3k+12(loại)
a, tim tat ca cac so nguyen to p sao cho p+11 cung la so nguyen to
b,tim tat ca cac so nguyen to p de p+8,p+10 cung la cac so nguyen to
Để p + 11 là số nguyên tố thì p là số chẵn (nếu p là số lẻ thì p + 11 là số chẵn \(\Rightarrow p+11⋮2\) mà chia hết cho một số thì không phải là số nguyên tố)
Trong tập hợp các số nguyên tố chỉ có 2 là số chẵn. Vậy p = 2
b) Để p + 8, p + 10 là số nguyên tố thì p là số lẻ (nếu p là số chẵn thì \(p+8⋮2,p+10⋮2\) mà chia hết cho một số thì không phải là số nguyên tố
Nếu p = 3, p + 8 = 3 + 8 = 11 là số NT; p + 10 = 3 + 10 = 13 là số NT (chọn)
Nếu \(p=3k\left(k\in N|k>1\right)\)thì p là hợp số (loại)
Nếu \(p=3k+1\left(k\in N\right)\Rightarrow p+8=3k+1+8=3k+9⋮3\) (loại)
Nếu \(p=3k+2\left(k\in N\right)\Rightarrow p+10=3k+2+10=3k+9⋮3\)
(loại)
Vậy p=3
Tim tat ca cac so nguyen to p va q sao cho so 7p+q va pq+11 cung la cac so nguyen to
Tim tat ca cac so nguyen to p va q sao cho so 7p+q va pq+11 cung la cac so nguyen to
tim tat ca so nguyen to P sao cho 2p + p2 cung la so nguyen to
Trường hợp p = 2 thì 2^p + p^2 = 8 là hợp số.
Trường hợp p = 3 thì 2^p + p^2 = 17 là số nguyên tố.
Trường hợp p > 3. Khi đó p không chia hết cho 3 và p là số lẻ. Suy ra p chia cho 3 hoặc dư 1 hoặc dư 2, do đó p^2 - 1 = (p - 1)(p + 1) chia hết cho 3. Lại vì p lẻ nên 2^p + 1 chia hết cho 3. Thành thử (2^p + 1) + (p^2 - 1) = 2^p + p^2 chia hết cho 3; suy ra 2^p + p^2 ắt hẳn là hợp số.
Vậy p = 3.
Sai rồi ko cần cảm ơn
P=5
=> 2p+p2=32+25=57(là số nguyên tố loại)
tim tat ca cac so nguyen to P sao cho 2p + p2 cung la so nguyen to
tim so nguyen p sao cho p^2=1 va p^4+1 cung la so nguyen to. tra loi so nguyen to thoa man la p=