Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Châu Trần
Xem chi tiết
alibaba nguyễn
15 tháng 6 2017 lúc 11:12

a/ \(\frac{1}{1+x}+\frac{1}{1+y}\le\frac{2}{1+\sqrt{xy}}\)

\(\Leftrightarrow\left(1+x\right)\left(1+\sqrt{xy}\right)+\left(1+y\right)\left(1+\sqrt{xy}\right)-2\left(1+x\right)\left(1+y\right)\le0\)

\(\Leftrightarrow x\sqrt{xy}+2\sqrt{xy}+y\sqrt{xy}-x-y-2xy\le0\)

\(\Leftrightarrow\sqrt{xy}\left(x-2\sqrt{xy}+y\right)-\left(x-2\sqrt{xy}+y\right)\le0\)

\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2\left(\sqrt{xy}-1\right)\le0\) đúng vì \(x,y\le1\)

b/ Vì \(\hept{\begin{cases}0\le x\le y\le z\le t\\yt\le1\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}xz\le1\\yt\le1\end{cases}}\)

Áp dụng câu a ta được

\(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}+\frac{1}{1+t}\le\frac{2}{1+\sqrt{xz}}+\frac{2}{1+\sqrt{yt}}\le\frac{4}{1+\sqrt[4]{xyzt}}\)

Băng băng
15 tháng 6 2017 lúc 10:16

khó quá

Songoku Sky Fc11
15 tháng 6 2017 lúc 10:18

KHÓ CHỨ DỄ ĐĂNG LÀM CHI

Nguyễn Hoàng Dũng
Xem chi tiết
Hoàng Minh Hoàng
14 tháng 9 2017 lúc 20:58

bạn dùng BĐT Cauchuy-Swartch cho cs Bt thứ 2 là ra nhé

Nguyễn Minh Huy
Xem chi tiết
Tran Le Khanh Linh
31 tháng 7 2020 lúc 20:42

vì 0<x,y,z\(\le\)1 nên (1-x)(1-y) >=0 <=> 1+xy >= x+y

<=> 1+z+xy >= x+y+z

<=> \(\frac{y}{1+z+xy}\le\frac{y}{x+y+z}\left(1\right)\)

tương tự có \(\frac{x}{1+y+xz}\le\frac{x}{x+y+z}\left(2\right);\frac{z}{1+x+xy}\le\frac{z}{x+y+z}\left(3\right)\)

cộng theo vế của (1), (2), (3) ta được

\(\frac{x}{1+y+xz}+\frac{y}{1+z+xy}+\frac{z}{1+x+yz}\le\frac{x+y+z}{x+y+z}\le\frac{3}{x+y+z}\)

dấu "=" xảy ra khi x=y=z=1

Khách vãng lai đã xóa
HD Film
30 tháng 7 2020 lúc 8:28

\(\frac{x}{1+y+zx}+\frac{y}{1+z+xy}+\frac{z}{1+x+yz}\le\text{Σ}\frac{x}{x^2+xy+zx}=\text{Σ}\frac{x}{x\left(x+y+z\right)}=\frac{3}{x+y+z}\)

Do \(1\ge x^2\)và \(y\ge xy\)

Dấu = xảy ra khi x = y = z = 1

Khách vãng lai đã xóa
Kiệt Nguyễn
1 tháng 11 2020 lúc 19:57

Xét biểu thức:\(\frac{x}{1+y+zx}-\frac{1}{x+y+z}=\frac{x\left(x+y+z\right)-\left(1+y+zx\right)}{\left(1+y+zx\right)\left(x+y+z\right)}=\frac{x^2+xy-1-y}{\left(1+y+zx\right)\left(x+y+z\right)}=\frac{\left(x+y+1\right)\left(x-1\right)}{\left(1+y+zx\right)\left(x+y+z\right)}\le0\)(Đúng vì \(x,y,z>0;x\le1\))

\(\Rightarrow\frac{x}{1+y+zx}\le\frac{1}{x+y+z}\)

Tương tư, ta có: \(\frac{y}{1+z+xy}\le\frac{1}{x+y+z}\)\(\frac{z}{1+x+yz}\le\frac{1}{x+y+z}\)

Cộng theo vế ba bất đẳng thức trên, ta được: \(\frac{x}{1+y+zx}+\frac{y}{1+z+xy}+\frac{z}{1+x+yz}\le\frac{3}{x+y+z}\)

Đẳng thức xảy ra khi x = y = z = 1

Khách vãng lai đã xóa
Nguyễn Đức Mẫn
Xem chi tiết
doan ngoc mai
30 tháng 6 2016 lúc 16:48

Từ giả thiết => \(\frac{y}{y+1}+\frac{z}{z+1}+\frac{t}{t+1}\le1-\frac{x}{x+1}=\frac{1}{x+1}\)

Áp dụng bất đẳng thức Cô-si cho ba số dương ta có

   \(\frac{1}{x+1}\ge\frac{y}{y+1}+\frac{z}{z+1}+\frac{t}{t+1}\ge3\sqrt[3]{\frac{yzt}{\left(y+1\right)\left(z+1\right)\left(t+1\right)}}\)

Tương tự     \(\frac{1}{y+1}\ge3\sqrt[3]{\frac{xzt}{\left(x+1\right)\left(z+1\right)\left(t+1\right)}}\)

                   \(\frac{1}{z+1}\ge3\sqrt[3]{\frac{xyt}{\left(x+1\right)\left(y+1\right)\left(t+1\right)}}\)

                   \(\frac{1}{t+1}\ge3\sqrt[3]{\frac{xyz}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}}\)

Nhân từng vế bốn bất đẳng thức, ta được \(81xyzt\le1\)

Nguyễn Khắc Trường Phúc
Xem chi tiết
Phan Nghĩa
5 tháng 7 2020 lúc 8:37

Áp dụng bđt cauchy schwarz dạng engel , ta có :

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}=\frac{1^2}{x}+\frac{1^2}{y}+\frac{1^2}{z}+\frac{1^2}{t}\ge\frac{16}{x+y+z+t}\)

\(< =>\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+1\ge\frac{16}{x+y+z+t}+1\)

Dấu "=" xảy ra khi và chỉ khi \(x=y=z=t\)

Vậy ta có điều phải chứng minh 

Khách vãng lai đã xóa
Phan Nghĩa
5 tháng 7 2020 lúc 8:49

cách khác :3

Áp dụng bđt phụ : \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(< =>\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(< =>\frac{a+b}{ab}.\left(a+b\right).ab\ge\frac{4}{a+b}.\left(a+b\right).ab\)

\(< =>\left(a+b\right)^2\ge4ab\)

\(< =>a^2+2ab+b^2\ge4ab\)

\(< =>\left(a-b\right)^2\ge\)(luôn đúng)

Nên ta có : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+1\ge\frac{4}{x+y}+\frac{4}{z+t}+1\ge\frac{16}{x+y+z+t}+1\)

Khách vãng lai đã xóa
zZz Cool Kid_new zZz
5 tháng 7 2020 lúc 9:05

dcv_new: Cách đó có khác gì Cauchy Schwarz đâu :V

Có thể làm như thế này nếu không muốn dùng Schwarz:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}\ge\frac{4}{\sqrt[4]{xyzt}}\ge\frac{4}{\sqrt[4]{\left(\frac{x+y+z+t}{4}\right)^4}}=\frac{16}{x+y+z+t}\)

Đẳng thức xảy ra tại x=y=z=t

Khách vãng lai đã xóa
Rồng Đom Đóm
Xem chi tiết
Rồng Đom Đóm
24 tháng 4 2019 lúc 18:54
Bưu Ca
Xem chi tiết
Vũ Tiến Manh
21 tháng 10 2019 lúc 15:37

Nhân cả 2 vế với xyz bất đẳng thức sẽ thành yz+ xz+xy+yz\(\sqrt{1+x^2}\)+xz\(\sqrt{1+y^2}+xy\sqrt{1+z^2}\le x^2y^2z^2\)

Ta có yz\(\sqrt{1+x^2}=\sqrt{yz}.\sqrt{yz+x^2yz}=\sqrt{yz}.\sqrt{yz+x\left(x+y+z\right)}=\)\(\sqrt{yz}.\sqrt{\left(x+y\right)\left(x+z\right)}\)\(\le\)\(yz+\frac{\left(x+y\right)\left(x+z\right)}{4}\)(2ab\(\le a^2+b^2\))

làm tương tự ta được xz\(\sqrt{1+x^2}\le xz+\frac{\left(x+y\right)\left(y+z\right)}{4};xy\sqrt{1+z^2}\le xy+\frac{\left(y+z\right)\left(z+x\right)}{4}.\)

vế trái \(\le\) 2(xy+yz+zx) + \(\frac{\left(x+y\right)\left(x+z\right)+\left(y+x\right)\left(y+z\right)+\left(z+x\right)\left(z+y\right)}{4}\)\(\le2.\frac{1}{3}.\left(x+y+z\right)^2+\frac{\frac{1}{3}\left(x+y+y+z+z+x\right)^2}{4}=\left(x+y+z\right)^2=x^2y^2z^2.\)

[ (a-b)2 +(b-c)2 +(c-a)2 \(\ge0\)<=>\(ab+bc+ca\le\frac{1}{3}\left(a+b+c\right)^2\) áp dụng vào trên)

dấu '=' xảy ra khi x=y=z \(\sqrt{3}\)

Khách vãng lai đã xóa
DANG CONG DANH
Xem chi tiết
Ngọc Nguyễn
Xem chi tiết
Nyatmax
1 tháng 9 2019 lúc 13:16

Ta co:\(x+y+z=0\)

\(\Leftrightarrow\frac{x+y+z}{xyz}=0\)

\(\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=0\)

\(\Leftrightarrow2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=0\)

\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

\(\Leftrightarrow\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}}=|\frac{1}{x}+\frac{1}{y}+\frac{1}{z}|\)

๖²⁴ʱƘ-ƔℌŤ༉
1 tháng 9 2019 lúc 14:14

\(x+y+z=0\)

\(\Leftrightarrow\frac{x+y+z}{xyz}=0\)(Vì \(x,y,z\ne0\))

\(\Leftrightarrow\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}=0\)

\(\Leftrightarrow2\left(\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}\right)=0\)

Mà \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}\right)\)

nên \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

\(\Leftrightarrow\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}}=\left|\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right|\)(Áp dụng HĐT \(\sqrt{x^2}=\left|x\right|\))