với giá trị nào của a thì đa thức (3x^3 +10x^2 + a-5) chia hết cho đa thức (3x+1)
Tìm giá trị nguyên của n :
để đa thức 3x3 + 10x2 - 5 chia hết cho đa thức 3x + 1
3x3+10x2-5 chia hết cho 3x-1
<=> 3x3-3x3-x2+10x2-5 chia hết cho 3x+1
<=> 9x2-5 chia hết cho 3x+1
<=> 9x2-(9x2+3x)-5 chia hết cho 3x+1
<=> 3x-5 chia hết cho 3x+1
<=> 6 chia hết cho 3x+1 <=> 3x+1 E Ư(6)
Vì 3x+1 chia 3 dư 1
<=> 3x+1 E {1;-2}
<=> 3x E {0;-3} <=> x E {0;-1}
Thực hiện phép chia đa thức 3x3 + 10x2 - 5 cho đa thức 3x + 1 ta được số dư là -32
Để phép chia trên là phép chia hết thì -32 ⋮ 3x + 1
=> 3x + 1 thuộc Ư(-32) = { 1; 2; 4; 8; 16; 32; -1; -2; -4; -8; -16; -32 }
=> x thuộc { 0; -1; 1; -3; 5; -11 } ( mình đã loại các trường hợp x không phải là số nguyên )
Vậy x thuộc { 0; -1; 1; -3; 5; -11 }
Bài làm của shitbo chả có căn cứ gì cả ??
Mong bạn không biết thì đừng trả lời nhé
Cho đa thức f(x)=x^3-3x^2+2. Với giá trị nguyên nào của a và b thì đa thức f(x) chia hết cho đa thức x^2+ax+b
và đây là cách phân tích duy nhất mà các hệ số của nhân tử đều nguyên.
Do đó f(x) cho hết khi chia hết
Ta có:
\(f\left(x\right)=\left(x-1\right)\left(x^2-x-2\right)\) và đây là cách phân tích duy nhất mà các hệ số của nhân tử đều nguyên
Do đó f(x) cho hết \(x^2+ax+b\) khi \(x^2-2x-2\) chia hết \(x^2+ax+b\)
=>a=b= -2
Cho đa thức f(x)=x^3-3x^2+2. Với giá trị nguyên nào của a và b thì đa thức f(x) chia hết cho đa thức x^2+ax+b
\(f\left(x\right)=\left(x-1\right)\left(x^2-2x-2\right)\) và đây là cách phân tích duy nhất mà các hệ số của nhân tử đều nguyên
Do đó f(x) cho hết \(x^2+ax+b\) khi \(x^2-2x-2\) chia hết \(x^2+ax+b\)
\(\Rightarrow a=b=-2\)
bài 4 với giá trị nào của a thì
a, x2 + 7x + 6 chia hết cho đa thức x + a
b, x3 - 3x2 + 5x + 2a chia hết cho đa thức ( x - 2 )
c, x3 - 3x + a chia hết cho đa thức ( x - 1 )2
bai 4 : với giá trị nào của a thì
a, x2 + 7x + 6 chia hết cho đa thức x+ a
b, x3 - 3x2 + 5x + 2a chia hết cho đa thức x - 2
c, x3 - 3x + a chia hết cho đa thức ( x + 1 )2
Cho đa thức: \(f\left(x\right)=x^3-3x^2+2\). Với giá trị nguyên nào của a và b thì đa thức f(x) chia hết cho đa thức: \(x^2+ax+b\)
Lời giải:
\(x^3-3x^2+2=x(x^2+ax+b)-(a+3)(x^2+ax+b)+(a^2+3a-b)x+b(a+3)+2\)
Để $f(x)$ chia hết cho $x^2+ax+b$ thì:
\(\left\{\begin{matrix} a^2+3a-b=0\\ b(a+3)+2=0\end{matrix}\right.\)
Với $a,b$ nguyên ta dễ dàng tìm được $a=b=-2$
Bài 1: Tìm n để
1) Đa thức 3x^3 + 10x^2 - 5 + n chia hết cho đa thức 3x + 1
2) Để giá trị của biểu thức 3n^3 + 10n^2 - 5 chia hết cho giá trị của biểu thức 3n + 1
3) Để giá trị của biểu thức 10n^2 + n - 10 chia hết cho giá trị của biểu thức n - 1
GIÚP MK VS MAI ĐI HỌC RỒI
Với giá trị nào của a thì đa thức 6x^3 + 5x^2 - 8x + a - 8 chia hết cho 3x +1
Với giá trị nào của a và b thì đa thức \(x^4-3x^3+ax+b\) chia hết cho đa thức \(x^2-3x+1\)
Xét :
x^4 - 3x^3 + ax + b
= (x^4-3x^3+x^2)-(x^2-3x+1) +ax+b - 3x + 1
= (x^2-3x+1).(x^2-1) + (a-3).x + (b+1)
=> để x^4-3x^3+ax+b chia hết cho x^2-3x+1 thì :
a-3=0 và b+1=0
<=> a=3 và b=-1
Vậy ...........
Tk mk nha