cho hàm số y =(m-2)x+2m-1. tim m để hàm số nhận giá trị nhỏ nhất là 10 với x thõa mãn 1<=x<=2
Cho hàm số y = 5 - m 2 x − 2 m – 1 . Tìm m để hàm số nhận giá trị là −5 khi x = 2 .
A. m = 5
B. m = 3
C. m = 2
D. m = − 3
Thay x = 2 ; y = − 5 vào y = 5 - m 2 x − 2 m – 1 ta được
− 5 = 5 - m 2 . 2 − 2 m – 1 ⇔ − 3 m + 4 = − 5 ⇔ − 3 m = − 9 ⇔ m = 3
Đáp án cần chọn là: B
Câu 1: Cho hàm số y = (3m + 5) x\(^2\) với m \(\ne\) \(\dfrac{-5}{3}\). Tìm các giá trị của tham số m để hàm số:
a) Nghịch biến với mọi x > 0
b) Đồng biến với mọi x >0
c) Đạt giá trị lớn nhất là 0
d) Đạt giá trị nhỏ nhất là 0
Câu 2: Cho hàm số y = \(\left(\sqrt{3k+4}-3\right)x^2\) với k \(\ge\dfrac{-4}{3}\); k \(\ne\dfrac{5}{3}\)
Tính các giá trị của tham số K để hàm số:
a) Nghịch biến với mọi x >0
b) Đồng biến với mọi x >0
Câu 1:
a) Để hàm số \(y=\left(3m+5\right)\cdot x^2\) nghịch biến với mọi x>0 thì \(3m+5< 0\)
\(\Leftrightarrow3m< -5\)
hay \(m< -\dfrac{5}{3}\)
Vậy: Để hàm số \(y=\left(3m+5\right)\cdot x^2\) nghịch biến với mọi x>0 thì \(m< -\dfrac{5}{3}\)
b) Để hàm số \(y=\left(3m+5\right)\cdot x^2\) đồng biến với mọi x>0 thì
3m+5>0
\(\Leftrightarrow3m>-5\)
hay \(m>-\dfrac{5}{3}\)
Vậy: Để hàm số \(y=\left(3m+5\right)\cdot x^2\) đồng biến với mọi x>0 thì \(m>-\dfrac{5}{3}\)
2.
Để hàm nghịch biến với x>0 \(\Leftrightarrow\sqrt{3k+4}-3< 0\)
\(\Leftrightarrow\sqrt{3k+4}< 3\Leftrightarrow3k+4< 9\)
\(\Rightarrow-\dfrac{4}{3}\le k< \dfrac{5}{3}\)
Để hàm đồng biến khi x>0
\(\Leftrightarrow\sqrt{3k+4}-3>0\Leftrightarrow\sqrt{3k+4}>3\)
\(\Leftrightarrow3k+4>9\Rightarrow k>\dfrac{5}{3}\)
Cho hàm y=f(x)=(-2m-4)x+1 a) tìm m để hàm số trên là hàm số bậc nhất b) với giá trị nào của m thì hàm số nghịch biến
a) hàm số bậc nhất -2m-4\(\ne\)0<=>m\(\ne-2\)
b)hàm số nghịch biến\(-2m-4< 0\Leftrightarrow m>-2\)
\(a,f\left(x\right)=\left(-2m-4\right)x+1\) bậc nhất \(\Leftrightarrow-2m-4\ne0\Leftrightarrow m\ne-2\)
\(b,f\left(x\right)=\left(-2m-4\right)x+1\) nghịch biến \(\Leftrightarrow-2m-4< 0\Leftrightarrow-2m< 4\Leftrightarrow m>-2\)
cho hàm số y=mx^2+(3m-1)x+2m-3. Gọi A là giá trị nhỏ nhất của hàm số. Tìm m sao cho A đạt giá trị lớn nhất
Bài 8. Cho hàm số y = (m - 2)x + m + 1 (d)
1) Với giá trị nào của m thì hàm số đã cho là hàm số bậc nhất ?
2) Tìm giá trị của m để đường thẳng (d) đi qua gốc tạo độ
3) Tim giá trị của m để đường thẳng (d) đi qua điểm A(2; 3)
4) Tìm giá trị của m để đường thẳng (d) tạo với trục Ox một góc tù
5) Tim m để đường thẳng (d) song song với đường thẳng y 3x +2 (d1)
câu 19: Tìm giá trị thực của tham số m khác 0 để hàm số y= mx^2-2mx-3m-2 có giá trị nhỏ nhất bằng -10 trên R
câu 20: Gọi S là tập hợp tất cả giá trị thực của tham số m để giá trị nhỏ nhất của hàm số y=f(x)=4x^2-4mx+m^2-2m trên đoạn [-2;0] bằng 3 . Tính tổng T các phần tử của S
Cho hàm số y = f ( x ) = x - m 2 x + 4 với m là số thực. Tìm giá trị lớn nhất của m để hàm số f(x) có giá trị nhỏ nhất trên [0;1] bằng -1
A. m = 2
B. m = 0
C. m 6
D. m = 3
cho hàm số y=x^2-3(m+1)x+m^2+3m-2, m là tham số . Tìm tất cả giá trị của m để giá trị nhỏ nhất của hàm số là lớn nhất
Cho hai hàm số bậc nhất y = (m + 1)x + 2m và y = (2m + 1)x + 3m. 1) Tìm giá trị của m để đồ thị của hai hàm số đã cho là hai đường thẳng song song. 2) Tìm giá trị của m để giao điểm của hai đồ thị đã cho nằm trên trục hoành.
1. Để 2 đồ thị hàm số đã cho là hai đường thẳng song song thì
\(\left\{{}\begin{matrix}m+1=2m+1\\2m\ne3m\end{matrix}\right.\left(ĐK:m\ne-1,-\dfrac{1}{2}\right)\)
Hệ phương trình tương đương với:
\(\left\{{}\begin{matrix}m=0\\m\ne0\end{matrix}\right.\Rightarrow\text{Hệ\:phương\:trình\:vô\:nghiệm}\)
Vậy không tồn tại giả trị m để đồ thị của hai hàm số trên song song.
2. Để giao điểm hai đồ thì nằm trên trục hoành thì y = 0.
\(y=\left(m+1\right)x+2m=0\Rightarrow x=-\dfrac{2m}{m+1}\) (1)
\(y=\left(2m+1\right)x+3m=0\Rightarrow x=-\dfrac{3m}{2m+1}\) (2)
và \(m+1\ne2m+1\Rightarrow m\ne0\) (3)
Từ (1) và (2) và (3) ta tìm được m = 1.
Bài 14. Cho hàm số bậc nhất y= (2m -1)x +m+1 (x là biến số).
Tim m để
1) Đồ thị hàm số song song với đường thẳng y= -5x +1.
2) Đồ thị hàm số đi qua điểm A(1; 3).
1: Để hai đường thẳng song song thì 2m-1=-5
hay m=-2