Tìm giá trị lớn nhất của p=\(|\sqrt{x^2-4x+5}-\sqrt{x^2+6x+13}|\)
tìm giá trị lớn nhất của P = \(\left|\sqrt{x^2-4x+5}-\sqrt{x^2+6x+13}\right|\)
\(P^2=2x^2+2x+18-2\sqrt{\left[\left(x-2\right)^2+1\right]\left[\left(x+3\right)^2+4\right]}\)
\(P^2\le2x^2+2x+18-2\sqrt{\left[\left(x-2\right)\left(x+3\right)+2\right]^2}\)
\(P^2\le2x^2+2x+18-2\left(x^2+x-4\right)\)
\(P^2\le26\Rightarrow P\le\sqrt{26}\)
Dấu "=" xảy ra khi \(x=7\)
Camr own moij nfuwowif ajTìm giá trị nhỏ nhất của:
A=\(\sqrt{x-2\sqrt{x-3}}\)
B=2\(\sqrt{x^2+3x+5}\)
Tìm giá trị lớn nhất của :
A=\(\sqrt{7-2x^2}\)
B=1+\(\sqrt{6x-x^2-7}\)
C=7+\(\sqrt{-4x^2+4x}\)
\(A=\sqrt{\left(x-3\right)-2\sqrt{x-3}+1+2}=\sqrt{\left[\left(x-3\right)-1\right]^2+2}\)
\(=\sqrt{\left(x-4\right)^2+2}\ge\sqrt{2}\)
GTNN CỦA A=CĂN 2 TẠI X=4
\(B=2.\sqrt{x^2+3x+\frac{9}{4}+\frac{11}{4}}=2.\sqrt{\left(x+\frac{3}{2}\right)^2+\frac{11}{4}}=\sqrt{4.\left(x+\frac{3}{2}\right)^2+11}\ge\sqrt{11}\)
GTNN CỦA B=CĂN 11 TẠI X=-3/2
bài 2
\(A=\sqrt{-2x^2+7}\le\sqrt{7}\)
GTLN CỦA A=CĂN 7 TẠI X=0
\(B=1+\sqrt{-\left(x^2-6x+7\right)}=1+\sqrt{-\left(x-3\right)^2+2}\)
để B lớn nhất thì \(\sqrt{-\left(x-3\right)^2+2}\) lớn nhất
mà\(\sqrt{-\left(x-3\right)^2+2}\le2\)
=> GTLN CỦA B=1+2 =3 TẠI X=3
\(C=7+\sqrt{-4\left(x^2-x\right)}=7+\sqrt{-4\left(x-\frac{1}{2}\right)^2+1}\le7+1=8\)
GTLN là 8 tại x=1/2
Tìm giá trị nhỏ nhất của biểu thức,
A=\(\sqrt{4x^2+4x+2}\)
B=\(\sqrt{2x^2-4x+5+1}\)
Tìm giá trị lớn nhất của biểu thức
M=\(-5+\sqrt{1+9x^2+6x}\)
a) \(A=\sqrt{4x^2+4x+2}=\sqrt{4x^2+4x+1+1}=\sqrt{\left(2x+1\right)^2+1}\)
Vì \(\left(2x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(2x+1\right)^2+1\ge1\forall x\)
\(\Rightarrow A\ge\sqrt{1}=1\)
Dấu " = " xảy ra \(\Leftrightarrow2x+1=0\)\(\Leftrightarrow2x=-1\)\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy \(minA=1\Leftrightarrow x=\frac{-1}{2}\)
b) \(B=\sqrt{2x^2-4x+5+1}=\sqrt{2x^2-4x+2+3+1}=\sqrt{2\left(x^2-2x+1\right)+4}\)
\(=\sqrt{2\left(x-1\right)^2+4}\)
Vì \(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2+4\ge4\forall x\)
\(\Rightarrow B\ge\sqrt{4}=2\)
Dấu " = " xảy ra \(\Leftrightarrow x-1=0\)\(\Leftrightarrow x=1\)
Vậy \(minB=2\Leftrightarrow x=1\)
tìm giá trị nhỏ nhất của
M=\(\sqrt{x^2+6x+9}+\sqrt{x^2-4x+4}\)
\(M=\sqrt{x^2+6x+9}+\sqrt{x^2-4x+4}\)
\(=\sqrt{x^2+2.x.3+3^2}+\sqrt{x^2-2.2x+2^2}\)
\(=\sqrt{\left(x+3\right)^2}+\sqrt{\left(x-2\right)^2}\)
TH1 : \(x< -3;\)có :
\(M=-\left(x+3\right)+\left[-\left(x-2\right)\right]\)
\(=-3-x+2-x\)
\(=-1-2x>-1-2.\left(-3\right)=-1+6=5\)
TH2 : \(-3\le x\le2;\)có :
\(M=\left(x+3\right)+\left[-\left(x-2\right)\right]\)
\(=x+2+2-x=4\)
TH3: \(x>2\)
\(\Rightarrow M=\left(x+3\right)+\left(x-2\right)=2x+1\ge2.2+1=5\)
\(\Rightarrow Min_M=4\)
\(\Leftrightarrow-3\le x\le2\)
Vậy ...
Tại hạ chưa học lớp 9 nên làm cách quèn :)
Cho hai số thực x,y thỏa mãn \(x^{^2}+y^2=2x+4y+4.\). Tìm giá trị lớn nhất của biểu thức
\(P=\sqrt{x^2+y^2+4x+2y+5}+\sqrt{6\left(x^2+y^2-4x-6y+13\right)}.\)
Bài 1: Rút gọn biểu thức \(A=\sqrt{3+\sqrt{13+\sqrt{48}}}\)
Bài 2: Giá trị lớn nhất của \(y=\sqrt{16-x^2}\)
Bài 3: Giá trị nhỏ nhất của \(y=2+\sqrt{2x^2-4x+5}\)
1.
\(A=\sqrt{3+\sqrt{\left(\sqrt{12}+1\right)^2}}=\sqrt{4+\sqrt{12}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)
2.
\(y=\sqrt{16-x^2}\le4\)
Dau '=' xay ra khi \(x=\sqrt{12}\)
3.
\(y=2+\sqrt{2\left(x-1\right)^2+3}\ge2+\sqrt{3}\)
Dau '=' xay ra khi \(x=1\)
tìm giá trị nhỏ nhất của biểu thức
\(\sqrt{x^2+4x+4}+\sqrt{x^2-6x+9}\)
\(\sqrt{x^2+4x+4}+\sqrt{x^2-6x+9}\)
\(=\sqrt{\left(x+2\right)^2}+\sqrt{\left(x-3\right)^2}\)
\(=\left|x+2\right|+\left|x-3\right|\)
\(=\left|x+2\right|+\left|3-x\right|\ge\left|x+2+3-x\right|=5\)
Dấu "=" xảy ra khi:
\(\left(x+2\right)\left(3-x\right)\ge0\)
\(\Leftrightarrow x+2\ge0\text{ và }3-x\ge0\text{ hoặc }x+2\le0\text{ và }3-x\le0\)
\(\Leftrightarrow x\ge-2\text{ và }x\le3\text{ hoặc }x\le-2\text{ và }x\ge3\left(loại\right)\)
Vậy giá trị nhỏ nhất của biểu thức là 5 tại \(-2\le x\le3\)
Tìm giá trị nhỏ nhất của biểu thức:
a) A = \(\sqrt{4x^2+4x+2}\)
b) B = \(\sqrt{2x^2-4x+5}\)
c) C = \(\dfrac{x-3}{\sqrt{x-1}-\sqrt{2}}\)
d) D = \(x-2\sqrt{x+2}\)
a,\(A=2\sqrt{x^2+x+\dfrac{1}{2}}=2\sqrt{x^2+x+\dfrac{1}{4}+\dfrac{1}{4}}=2\sqrt{\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{4}}\)
\(=\sqrt{4\left(x+\dfrac{1}{2}\right)^2+1}\ge1\) dấu"=" xảy ra<=>x=-1/2
\(B=\sqrt{2\left(x^2-2x+\dfrac{5}{2}\right)}=\sqrt{2\left[x^2-2x+1+\dfrac{3}{2}\right]}\)
\(=\sqrt{2\left(x-1\right)^2+3}\ge\sqrt{3}\) dấu"=" xảy ra<=>x=1
\(C=\dfrac{x-3}{\sqrt{x-1}-\sqrt{2}}\ge\dfrac{-2}{-\sqrt{2}}=\sqrt{2}\) dấu"=" xảy ra<=>x=1
\(D=x-2\sqrt{x+2}\ge-2\) dấu"=" xảy ra<=>x=-2
d)D=\(x-2\sqrt{x+2}=\left(x+2\right)-2\sqrt{x+2}+1-3\)
\(=\left(\sqrt{x+2}-1\right)^2-3\ge-3\)
Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x+2}=1\Leftrightarrow x+2=1\Leftrightarrow x=-1\)
cho các số thực x,y,,z≥0 thỏa mãn x+y+z=3.Tìm giá trị nhỏ nhất và giá trị lớn nhất cảu biểu thức \(P=\sqrt{x^2-6x+25}+\sqrt{y^2-6y+25}+\sqrt{z^2-6z+25}\)
\(P=\sqrt{\left(x-3\right)^2+4^2}+\sqrt{\left(y-3\right)^2+4^2}+\sqrt{\left(z-3\right)^2+4^2}\)
\(P\ge\sqrt{\left(x-3+y-3+z-3\right)^2+\left(4+4+4\right)^2}=6\sqrt{5}\)
\(P_{min}=6\sqrt{5}\) khi \(x=y=z=1\)
Mặt khác với mọi \(x\in\left[0;3\right]\) ta có:
\(\sqrt{x^2-6x+25}\le\dfrac{15-x}{3}\)
Thật vậy, BĐT tương đương: \(9\left(x^2-6x+25\right)\le\left(15-x\right)^2\)
\(\Leftrightarrow8x\left(3-x\right)\ge0\) luôn đúng
Tương tự: ...
\(\Rightarrow P\le\dfrac{45-\left(x+y+z\right)}{3}=14\)
\(P_{max}=14\) khi \(\left(x;y;z\right)=\left(0;0;3\right)\) và hoán vị