x/2=y/3=z/6 và 2x-3y+5z=38
a) x/5=y/6=z/7 và x-y+z=36
b)x/5=y/-6=z/7 và x+y-z= 32
c) x/5=y/3=z/2 và 2x+3y+4z=54
d) x/5=y/2=z/3 và 2x-3y+5z=38
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405
a)\(\frac{x}{5}=\frac{y}{6}=\frac{z}{7}\)và\(x-y+z=36\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{5}=\frac{y}{6}=\frac{z}{7}=\frac{x-y+z}{5-6+7}=\frac{36}{6}=6\)
\(\Rightarrow\)\(x=5.6=30\)
\(y=6.6=36\)
\(z=7.6=30\)
b)\(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}\)và\(x+y-z=32\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}=\frac{x+y-z}{5+\left(-6\right)-7}=\frac{32}{-8}=-4\)
\(\Rightarrow\)\(x=-4.5=-20\)
\(y=-4.-6=24\)
\(z=-4.7=-28\)
c)\(\frac{x}{5}=\frac{y}{3}=\frac{z}{2}\)và \(2x+3y+4z\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{5}=\frac{y}{3}=\frac{z}{2}=\frac{2x+3y+4z}{2.5+3.3+4.2}\)\(=\frac{54}{27}=2\)
\(\Rightarrow\)\(x=2.5=10\)
\(y=2.3=6\)
\(z=2.2=4\)
d)\(\frac{x}{5}=\frac{y}{2}=\frac{z}{3}\)và \(2x-3y+5z=38\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{5}=\frac{y}{2}=\frac{z}{3}=\frac{2x-3y+5z}{2.5-3.2+5.3}=\frac{38}{19}=2\)
\(\Rightarrow\)\(x=2.5=10\)
\(y=2.2=4\)
\(z=3.2=6\)
Hok tốt!
@Kaito Kid
1/ x\(\dfrac{x}{3}=\dfrac{y}{8}=\dfrac{z}{5}\text{và}2x+3y-z=50\)
2/ x : y : z = 3 : 5 ; ( - 2 ) và 5x - y + 3z = -16
3/ 2x + 3y ; 7z = 5y và 3x - 7y + 5z = 30
4/ \(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{4}=\dfrac{z}{5}\text{và}x-y-z=38\)
4: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y-z}{8-12-15}=\dfrac{38}{-19}=-2\)
Do đó: x=-16; y=-24; z=-30
tìm các số x, y ,z, biết rằng:
a) x:y:z=3:4:5 và 5z^2-3x^2-2y^2=594
b) 3(x-1)=2(y-2);4(y-2)=3(z-3) và 2x+3y-z=50
c) 2x/3=3y/4=4z/5 và x+y-z =38
Với các bài khá nâng cao như vậy bạn đăng tách ra nhé!
Answer:
a) Ta có: \(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Ta đặt: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\left(k\inℕ^∗\right)\)
\(\Rightarrow\hept{\begin{cases}x=3k\\y=4k\\z=5k\end{cases}}\)
Ta có: \(5z^2-3x^2-2y^2=594\)
\(\Rightarrow5.\left(5k\right)^2-3.\left(3k\right)^2-2.\left(4k\right)^2=594\)
\(\Rightarrow5.5^2k^2-3.3^2k^2-2.4^2k^2=594\)
\(\Rightarrow5.25k^2-3.9k^2-2.16.k^2=594\)
\(\Rightarrow125k^2-27k^2-32k^2=594\)
\(\Rightarrow k^2.\left(125-27-32\right)=594\)
\(\Rightarrow k^2.66=594\)
\(\Rightarrow k^2=9\)
\(\Rightarrow k=\pm3\)
Với \(k=3\Rightarrow\hept{\begin{cases}x=3.3=9\\y=3.4=12\\z=3.5=15\end{cases}}\)
Với \(k=-3\Rightarrow\hept{\begin{cases}x=\left(-3\right).3=-9\\y=\left(-4\right).3=-12\\z=\left(-5\right).3=-15\end{cases}}\)
Answer:
b) \(3.\left(x-1\right)=2.\left(y-2\right)\Rightarrow6.\left(x-1\right)=4.\left(y-2\right)\)
Mà: \(4.\left(y-2\right)=3.\left(z-3\right)\)
\(\Rightarrow6.\left(x-1\right)=4.\left(y-2\right)=3.\left(z-3\right)\)
\(\Rightarrow\frac{6.\left(x-1\right)}{12}=\frac{4.\left(y-2\right)}{12}=\frac{3.\left(z-3\right)}{12}\Rightarrow\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2x-2}{4}=\frac{3y-6}{9}==\frac{\left(2x-2\right)+\left(3y-6\right)-z}{4+9-4}=\frac{2x-2+3y-6-z}{9}=\frac{\left(2x+3y-z\right)-\left(2+6\right)}{9}=\frac{50-8}{9}=\frac{14}{3}\)
\(\Rightarrow\hept{\begin{cases}x-1=2.\frac{14}{3}=\frac{28}{3}\\y-2=3.\frac{14}{3}=14\\z-3=4.\frac{14}{3}=\frac{56}{3}\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{31}{3}\\y=16\\z=\frac{68}{3}\end{cases}}\)
c) \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Rightarrow\frac{2x}{3.12}=\frac{3y}{4.12}=\frac{4z}{5.12}\Rightarrow\frac{x}{18}=\frac{y}{16}=\frac{z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y-z}{18+16-15}=\frac{38}{19}=2\)
\(\Rightarrow\frac{x}{18}=2\Rightarrow x=18.2=36\)
\(\Rightarrow\frac{y}{16}=2\Rightarrow y=16.2=32\)
\(\Rightarrow\frac{z}{15}=2\Rightarrow z=15.2=30\)
TÌM X, Y, Z BIẾT: 2x = 3y = 5z và x + y - z = 38
\(2x=3y=5z\Rightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y-z}{15+10-6}=\dfrac{38}{19}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.15=30\\y=2.10=20\\z=2.6=12\end{matrix}\right.\)
\(2x=3y=5z\) \(\Rightarrow\dfrac{2x}{30}=\dfrac{3y}{30}=\dfrac{5z}{30}\Rightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\)
Theo tính chất dãy tỉ số bằng nhau:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y-z}{15+10-6}=\dfrac{38}{19}=2\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=2\\\dfrac{y}{10}=2\\\dfrac{z}{6}=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=30\\y=20\\z=12\end{matrix}\right.\)
1, X/10 = Y/6 = z/21 và 5x+y -2z = 28
2. 3x=2y ; 7y = 5z và x-y+z = 32
3. x/3 = y/4 ; y/3 = z/3 và 2x-3y+ z = 6
4. 2x/3 = 3y/4 = 4z/5 và x+y+z = 49
5. x-1/2 = y-2/3 = z-3/4 và 2x+3y -2 = 50
Mình làm một câu ví dụ thui nha
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
\(\frac{5x}{50}=2\Rightarrow x=20\)
\(\frac{y}{6}=2\Rightarrow y=12\)
\(\frac{2z}{42}=2\Rightarrow x=42\)
mấy câu khác thì tương tự
tíc mình nha bạn
a, x/5=y/3 và 5x-3y=8
b, x/3=y/4 ; y/5 = z/7 va 2x+ 3y-z=124
c, 3x=2y ; 7y=5z va x-y+z=32
đ, 2x/3=3y/4=4z/5 và x+y+z=49
e, 2x=3y=5z va x+y-z=95
f, x-1/2=y-2/3=z-3/4 va 2x+3y-z=50
Bạn áp dụng tính chất dãy tỉ số bằng nhau đi :)
ap dung tinh chat day ti so = nhau nhoaaaaaaaaaaaaaaaa
tk mk nhe
a) x/3 = y/6 = z/5 và 2xy - 3y^2 - 4yz = 24
b) x^2/4 = y^2/9 = z^2/25 và 2x + 3y -5z = (-12)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{6}=\frac{z}{5}=\frac{2xy-3y^2-4yz}{2.3.6-3.6^2-4.6.5}=\frac{24}{-192}=\left(-\frac{1}{8}\right)\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{3}=\left(-\frac{1}{8}\right)\Rightarrow x=\left(-\frac{3}{8}\right)\\\frac{y}{6}=\left(-\frac{1}{8}\right)\Rightarrow y=\left(-\frac{3}{4}\right)\\\frac{z}{5}=\left(-\frac{1}{8}\right)\Rightarrow z=\left(-\frac{5}{8}\right)\end{cases}}\)
Vậy ....
\(b,\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}=\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{2x+3y-5z}{2.2+3.3-5.5}=\frac{\left(-12\right)}{\left(-12\right)}=1\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=1\Rightarrow x=2\\\frac{y}{3}=1\Rightarrow y=3\\\frac{z}{5}=1\Rightarrow z=5\end{cases}}\)
Vậy ...
Tìm x , y , z biết:
a) x/10 = y/6 = z/21 và 5x = y - 2z = 28
b) 3x = 2y ; 7y = 5z và x - y + z = 32
c) x/3 = y/4 ; y/3 = z/5 và 2x - 3y + z = 6
d) 2x/3 = 3y/4 = 4z/5 và x + y + z = 49
e) x-1 trên 2 - y - 2 trên 3 = z -3 trên 4 và 2x + 3y - z = 50
b) 3x = 2y
=> x/2 = y/3 (1)
7y = 5z
=> y/5 = z/7 (2)
Từ (1) và (2), có:
\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\)\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
áp dụng tính chất của dãy tỉ số bằng nhau, có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
x/10 = 2 => x = 2 x 10 =20
y/15 = 2 => y = 2 x 15 = 30
z/21 = 2 => z = 2 x 21 = 42
Tìm x,y,z biết :
a)x/10=y/6=z/21 và 5x+y-2z=28
b)3x=2y,7y=5z ,x-y+z=32
c)x/3=y/4,y/3=z/5 ,2x-3y+z=6
d)2x/3=3y/4=4z/5 và x+y+z=49
e) (x-1)/2=(y-2)/3=(z-3)/4 và 2x +3y-z =50
g)x/2=y/3=z/5 và x.y.z=810
a) \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)
Áp dụng tc dãy tỉ số bằng nhau ta có:
\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
Khi đó: \(\hept{\begin{cases}\frac{5x}{50}=2\Rightarrow x=20\\\frac{y}{6}=2\Rightarrow y=12\\\frac{2z}{42}=2\Rightarrow z=42\end{cases}}\)
e) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)
Áp dụng tc dãy tỉ số bằng nhau ta có:
\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{2x+3y-z-5}{9}=\frac{50-5}{9}=5\)
Khi đó: \(\hept{\begin{cases}\frac{2x-2}{4}=5\Rightarrow x=11\\\frac{3y-6}{9}=5\Rightarrow y=17\\\frac{z-3}{4}=5\Rightarrow z=23\end{cases}}\).