\(x^3-4x^2-8x+8\)
Tìm max A = \(\dfrac{x^3+8}{x^3-8}.\dfrac{4x^2+8x+16}{x^2-4}-\dfrac{4x}{x-2}:\left(\dfrac{-16}{x^4-6x^3+12x^2-8x}\right)\)
Tìm giá trị lớn nhất của biểu thức:
a) \(A=\frac{8x^2-1}{4x^2+1}+12\)
b) \(B=\left(\frac{x^3+8}{x^3-8}.\frac{4x^2+8x+16}{x^2-4}-\frac{4x}{x-2}\right):\frac{-16}{x^4-6x^3+12x^2-8x}\)
a) Theo mình thì chỉ min thôi nhé!
\(A=\frac{8x^2-1}{4x^2+1}+1+11=\frac{12x^2}{4x^2+1}+11\ge11\)
b)Bạn rút gọn lại giùm mìn, lười quy đồng lắm:(
Phân tích thành nhân tử:
a, 15x^3+29x-8x-12
b, (x^2+4x+8)^2+3(x^2+4x+8)+4x^2
x^3 -4x^2+8x-8
Câu: Đẳng thức nào sau đây là đúng. *
4x^3y^2 – 8x^2y^3 = 4x^2.y(xy – 2y^2)
4x^3y^2 – 8x^2y^3 = 4x^2y^2(x – 2y)
4x^3y^2 – 8x^2y^3 = x^2y^2(x – 2y)
4x^3y^2 – 8x^2y^3 = 4x^2y^2(x – y)
ta có 4 x 3 y 2 – 8 x 2 y 3 = 4 x 2 y 2 . x – 4 x 2 y 2 . 2 y = 4 x 2 y 2 ( x – 2 y )
Vậy 4x3y2 – 8x2y3 = 4x2y2(x – 2y)
Đáp án cần chọn là: C
bấm đúng cho mik đi
Giải phương trình:
1. \(x^4-6x^2-12x-8=0\)
2. \(\dfrac{x}{2x^2+4x+1}+\dfrac{x}{2x^2-4x+1}=\dfrac{3}{5}\)
3. \(x^4-x^3-8x^2+9x-9+\left(x^2-x+1\right)\sqrt{x+9}=0\)
4. \(2x^2.\sqrt{-4x^4+4x^2+3}=4x^4+1\)
5. \(x^2+4x+3=\sqrt{\dfrac{x}{8}+\dfrac{1}{2}}\)
6. \(\left\{{}\begin{matrix}4x^3+xy^2=3x-y\\4xy+y^2=2\end{matrix}\right.\)
7. \(\left\{{}\begin{matrix}\sqrt{x^2-3y}\left(2x+y+1\right)+2x+y-5=0\\5x^2+y^2+4xy-3y-5=0\end{matrix}\right.\)
8. \(\left\{{}\begin{matrix}\sqrt{2x^2+2}+\left(x^2+1\right)^2+2y-10=0\\\left(x^2+1\right)^2+x^2y\left(y-4\right)=0\end{matrix}\right.\)
1.
\(x^4-6x^2-12x-8=0\)
\(\Leftrightarrow x^4-2x^2+1-4x^2-12x-9=0\)
\(\Leftrightarrow\left(x^2-1\right)^2=\left(2x+3\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=2x+3\\x^2-1=-2x-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\x^2+2x+2=0\end{matrix}\right.\)
\(\Leftrightarrow x=1\pm\sqrt{5}\)
3.
ĐK: \(x\ge-9\)
\(x^4-x^3-8x^2+9x-9+\left(x^2-x+1\right)\sqrt{x+9}=0\)
\(\Leftrightarrow\left(x^2-x+1\right)\left(\sqrt{x+9}+x^2-9\right)=0\)
\(\Leftrightarrow\sqrt{x+9}+x^2-9=0\left(1\right)\)
Đặt \(\sqrt{x+9}=t\left(t\ge0\right)\Rightarrow9=t^2-x\)
\(\left(1\right)\Leftrightarrow t+x^2+x-t^2=0\)
\(\Leftrightarrow\left(x+t\right)\left(x-t+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-t\\x=t-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{x+9}\\x=\sqrt{x+9}-1\end{matrix}\right.\)
\(\Leftrightarrow...\)
2.
ĐK: \(x\ne\dfrac{2\pm\sqrt{2}}{2};x\ne\dfrac{-2\pm\sqrt{2}}{2}\)
\(\dfrac{x}{2x^2+4x+1}+\dfrac{x}{2x^2-4x+1}=\dfrac{3}{5}\)
\(\Leftrightarrow\dfrac{1}{2x+\dfrac{1}{x}+4}+\dfrac{1}{2x+\dfrac{1}{x}-4}=\dfrac{3}{5}\)
Đặt \(2x+\dfrac{1}{x}+4=a;2x+\dfrac{1}{x}-4=b\left(a,b\ne0\right)\)
\(pt\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{3}{5}\left(1\right)\)
Lại có \(a-b=8\Rightarrow a=b+8\), khi đó:
\(\left(1\right)\Leftrightarrow\dfrac{1}{b+8}+\dfrac{1}{b}=\dfrac{3}{5}\)
\(\Leftrightarrow\dfrac{2b+8}{\left(b+8\right)b}=\dfrac{3}{5}\)
\(\Leftrightarrow10b+40=3\left(b+8\right)b\)
\(\Leftrightarrow\left[{}\begin{matrix}b=2\\b=-\dfrac{20}{3}\end{matrix}\right.\)
TH1: \(b=2\Leftrightarrow...\)
TH2: \(b=-\dfrac{20}{3}\Leftrightarrow...\)
phân tích đa thức sau thành nhân tử
6, x mũ 4 - 4x mũ 3 - 8x mũ 2 + 8x
8, x mũ 4 + 2x mũ 3 + x mũ 2 - y mũ 2
10, 4x mũ 2 ( x + y ) -x - y
6, x mũ 4 - 4x mũ 3 - 8x mũ 2 + 8x =x (x+2) (x^2-6x+4)
8, x mũ 4 + 2x mũ 3 + x mũ 2 - y mũ 2 = -(y-x^2-x) (y+x^2+x)
10, 4x mũ 2 ( x + y ) -x - y = (2x-1) (2x+1) (y+x)
Giải BPT
a, x2 - 2x + 8 < 0
b, 4x2 - 4x - 8 > 0
c, (2x - 3)/(19 + 8x) < 0
d, (x - 2)/(x - 1) - 3/(x - 1) < 1
Phân tích đa thức thành nhân tử ( đặt biến phụ):
a) (x^2+4x+8)^2+3x(x^2+4x+8)+2x^2
b) (x^2+x+1)(x^2+x+2)-12
c) (x^2+8x+7)(x^2+8x+15)+15
d) (x+2)(x+3)(x+4)(x+5)-24
Cho biểu thức A = \(\left(\dfrac{4x}{x+2}-\dfrac{x^3-8}{x^3+8}.\dfrac{4x^2-8x+16}{x^2-4}\right):\dfrac{16}{x^2-x-6}\)
a) Rút gọn A
b) Tìm x để A < 0
c) Tìm x để A ≥ 5