chứng minh (x+2)(x+4)(x+6)(x+8)+16+(x^2+10x+20)^2 là số chính phương
a) Tìm số tự nhiên x để A=x14+x13+1 là số nguyên tố
b) Chứng minh x4-10x2+27 không là số chính phương
a)
Xét x=0 => A = 1 không là số nguyên tố
Xét x=1 => A= 3 là số nguyên tố (chọn)
Xét x>1
Có A = x14+ x13 + 1 = x14 - x2 + x13 - x + x2 + x + 1
A = x2(x12-1) + x(x12-1) + x2+x+1
A = (x2+x)(x3*4-1) + x2 + x + 1
Có x3*4 chia hết cho x3
=> x3*4-1 chia hết cho x3 - 1 = (x-1)(x2+x+1)
=> x3*4-1 chia hết cho x2+x+1
=>A chia hết cho x2+x+1 mà x2+x+1 >0 (do x>1)
=> A là hợp số với mọi x > 1 (do A chia hết cho x2+x+1)
chứng minh với x thuộc Q thì giá trị của đa thức M =(x+2)(x+4)(x+6)(x+8)+16 là bình phương của một số hữu tỉ
\(M=\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)
\(\Leftrightarrow M=\left(x^2+10x+16\right)\left(x^2+10x+24\right)\)
Đặt \(x^2+10x+20=y\)ta được :
\(M=\left(y-4\right)\left(y+16\right)+16\)
\(\Leftrightarrow M=y^2-16+16\)
\(\Leftrightarrow M=y^2\)
Mà theo bài thì \(x\in Q\)nên \(y\in Q\)suy ra đpcm
xin lỗi nha ! Ở chỗ hàng thứ tư là \(M=\left(y-4\right)\left(y+4\right)+16\)mới đúng . Biết là viết sai nhưng vẫn chưa kịp sửa mong bạn thông cảm ...
Ta có: \(M=\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)
\(\Leftrightarrow M=\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+16\)
\(\Leftrightarrow M=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)
\(\Leftrightarrow M=\left(x^2+10x+16\right)\left(x^2+10x+16+8\right)+16\)
\(\Leftrightarrow M=\left(x^2+10x+16\right)^2+8\left(x^2+10+16\right)+16\)
\(\Leftrightarrow M=\left(x^2+10x+20\right)^2\)
Mà \(x\in Q\Leftrightarrow\left(x^2+10x+20\right)\in Q\Leftrightarrow M=\left(\frac{m}{n}\right)^2\)
Vậy \(M=\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\) là bình phương của 1 số hữu tỉ (Đpcm)
chứng minh rằng (x^2+6x+8)(x^2+14x+48)+16 là số chính phương với mọi số nguyên
Giusp em với ạ, em đangg cần gấp, em cảm ơn
\(\left(x^2+6x+8\right)\left(x^2+14x+48\right)+16\)
\(=\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)
\(=\left(x^2+10x\right)^2+40\left(x^2+10x\right)+400\)
\(=\left(x^2+10x+20\right)^2\)
Chứng minh rằng với mọi x thuộc Q thì giá trị của đa thức:
M=(x+2)(x+4)(x+6)(x+8)+16 là bình phương của một số hữu tỉ.
M = (x + 2)(x + 4)(x + 6)(x + 8) + 16
M = [(x + 2)(x + 8)][(x + 4)(x + 6)] + 16
M = (x^2 + 2x + 8x + 16)(x^2 + 4x + 6x + 24) + 16
M = (x^2 + 10x + 16)(x^2 + 10x + 24) + 16
Đặt t = x^2 + 10x + 20
M = (t - 4)(t + 4) + 16
M = t^2 - 16 + 16 = t^2
Vậy ta có đpcm
Chứng minh rằng với mọi x thuộc Q thì giá trị của đa thức: M = (x+2)(x+4)(x+6)(x+8)(x+16) là bình phương cử một số hữu tỉ
cmr: B= x(x+2)(x+4)(x+6)+16 là số chính phương
\(B=\left(x^2+6x\right)\left(x^2+6x+8\right)+16\\ B=\left(x^2+6x\right)^2+8\left(x^2+6x\right)+16\\ B=\left(x^2+6x+4\right)^2\left(đpcm\right)\)
cho đa thức A=(x+2)(x+4)(x+6)(x+8)+16
CMR vs mọi sô tự nhiên x thì A luôn là 1 số chính phương
A = (x+2)(x+4)(x+6)(x+8)+16 =(x+2)(x+8)(x+4)(x+6)+16 =(x2+10x+16)(x2+10x+24)+16
đặt t=x2+10x+20
ta được: (t-4)(t+4) =t2-16 thay lại biểu thức A ta đc:
A = t2 -16 +16 =t2 =(x2+10x+20)2
Vậy A là số CP
\(A=\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)
\(\Leftrightarrow A=\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+16\)
\(\Leftrightarrow\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)
Đặt \(y=x^2+10+20\)
\(\Rightarrow A=\left(y-4\right)\left(y+4\right)+16\)
\(\Leftrightarrow A=y^2-16+16\)
\(\Leftrightarrow A=y^2=\left(x^2+10x+20\right)^{20}\)
Vậy với mọi STN x thì A luôn là 1 số chính phương
Mình đang học về chuyên đề số chính phương có vài câu hỏi khó nhờ các bạn giải giúp trước thứ Ba ngày 26/1/2016 cảm ơn các bạn nhiều lắm !!!
Câu 1: a) Chứng minh 11...122...25 là số chính phương (với n số 1 và n+1 số 2)
b) Cho B = 44...4 (100 số 4) = 4 x 11...1 (100 số 1) là số chính phương. Chứng minh 11...1 (100 số 1) là số chính phương
Câu 2: a) Cho các số A= 11.....11 (2m chữ số 1) ; B = 11...11 (m+1 số 1) ; C = 66...6 (m chữ số 6)
CMR: A+B+C+8 là số chính phương
b) CMR: Với mọi x,y thì A = (x+y)(x+2y)(x+3y)(x+4y) + y4 là số chính phương
Co ai giup minh ko chang le newbie ko dc giup sao
Bài 1: Cho N là tổng của hai số chính phương. Chứng minh rằng 2N cũng là tổng của hai số chính phương.
Bài 2: Tìm số dư trong phép chia của đa thức: (x+2)(x+4)(x+6)(x+8)+ 2015 cho đa thức x2 + 10x+21
Bài 3:Cho tam giác ABC, vẽ ba đường phân giác AD, BE, CF.Chứng minh:
a, \(\frac{DB}{DC}.\frac{EC}{EA}.\frac{FA}{FB}=1\)
b, \(\frac{1}{AD}+\frac{1}{BE}+\frac{1}{CF}>\frac{1}{BC}+\frac{1}{CA}+\frac{1}{AB}\)